Orissa School of Mining Engineering Keonjhar Department of Electrical Engineering ## <u>Lesson Plan</u> #### The Vision of the Electrical Engineering Department: To provide excellent knowledge and enrich the problem solving skills of the students in the field of Electrical Engineering with a focus to prepare the students for industry need, recognized as innovative leader, responsible citizen and improve the environment. ### The Mission of Electrical Engineering Department: - Prepare the students with strong fundamental concepts, analytical capability, and problem solving skills. Create an ambience of education through faculty training, self-learning, sound academic practices and research endeavors. - 2. Provide opportunities to promote organizational and leadership skills in students through various extra- curricular and co-curricular events. - 3. To make the students as far as possible industry ready to enhance their employability in the industries. - 4. To improve department industry collaboration and to maintain effective operational environment. #### Program Educational Objectives: The Program Educational Objectives (PEOs) of the Electrical Engineering Department are given below: - 1. PEO1- To engage in Design of Systems, tools and applications in the field of electrical Engineering and allied engineering Industries. - 2. PE02- To apply the knowledge of electrical engineering to solve problems of social relevance and/or pursue higher education - PE03- To work effectively as individuals and as team members in multidisciplinary projects by exhibit leadership capability, triggering social and economic commitment and inculcate community services and protect environment - 4. PEO4- Engage in lifelong learning, career enhancement and adapt to changing professional and societal needs. numbers for a binary number ### Program Specific Outcome (PSOs)Program Outcome(POs): Basic and Discipline specific knowledge: Apply knowledge of basic mathematics, science and engineering fundamentals and engineering specialization to solve the engineering problems. - 1 Problem Analysis: Identify and analyze well defined engineering problems using codified standard methods. - Design/development of solutions: Design solutions for well-defined technical problems and assist with the design of system components or processes to meet specified needs. - 3. Engineering Tools, Experimentation and Testing: Apply modern engineering tools and appropriate technique to conduct standard tests and measurements. - 4. Engineering Practices for Society ,Sustainability and Environment : Apply appropriate technology in context of society ,sustainability ,environment and ethical practices. - 5. Project Management: Use engineering management principles individually ,as a team member or a leader to manage projects and effectively communicate about well-defined engineering activities. - 6. Life-long Learning: Ability to analyze individual needs and engage in updating in the context of technological changes. ## Program Specific Outcome(PSOs) PSO1:Apply engineering and laboratory skills for testing operation and maintenance of electrical machine ,power and energy system PSO2:Model and analyze ,realize physical systems ,components or processes related to electrical engineering system PSO3:work professionally in power system engineering ,electrical machine and circuit system | bject : Pr2. CIRCUI | | LATION LAB | | |------------------------------------|-------|--|---------------------| | Discipline: Electrical Engineering | | Name of the Faculty: Er. Sitanjali Mardi | | | Course Code: | TH- 2 | Semester: | 3rd | | Total Periods: | 90 | Examination: | 3hrs winter 2023-24 | | Theory Periods: | 6P/W | Sessional: | 50 | | Maximum Marks: | 100 | End Semester Examination: | 50 | | Neek | NO OF
PERIODS
AVAILABLE | Class Day | Theory Topics to be covered | Remarks | |-----------------|-------------------------------|--|---|---------| | 1st | 2 | 1 st
3.8.23 | INTRODUCTION/ BRIEFING | | | 151 | | 2nd
7.8.23 | Measurement of equivalent resistance in series and parallel circuit | | | | | 1 st
10.8.23 | Measurement of equivalent resistance in series and parallel circuit | | | 2nd 2 | 2nd
14.8.23 | 2. Measurement of power and power factor using series R-L-C Load | 1. | | | | | 1st
17.8.23 | Measurement of power and power factor using series R-L-C Loa | d. | | 3rd | 2 | 2nd
21.8.23 | Verification of KCL and KVL. | | | ATL | 2 | 1st
24.8.23 | 3. Verification of KCL and KVL. | | | 4TH | 2 | 2 nd ,
28.8.23 | Verification of Super position theorem | | | 5 th | 2 | 1st
31.8.23 | Verification of Super position theorem | | | / | | 2 nd ,
4.9.23 | 5. Verification of Thevenin's Theorem | | |--------|---|-------------------------------|--|--| | | 2 | 1 st
7.9.23 | 5. Verification of Thevenin's Theorem | | | | | 2 nd
11.9.23 | 6. Verification of Norton's Theorem | | | 7th | 2 | 1 st ,
14.9.23 | 6. Verification of Norton's Theorem | | | | | 2 nd
18.9.23 | 7. Verification of Maximum power transfer Theorem | | | 8th | | 1 st
21.9.23 | 7. Verification of Maximum power transfer Theorem | | | | 2 | 2 nd
25.9.23 | Determine resonant frequency of series R-L-C circuit | | | 9th | | 1 st
28.9.23 | Determine resonant frequency of series R-L-C circuit | | | | 2 | 2 nd
5.10.23 | Study of Low pass filter & determination of cut-off frequency | | | 10th | 2 | 1 st ,
9.10.23 | Study of Low pass filter & determination of cut-off frequency | | | | | 2 nd
12.10.23 | 10. Study of High pass filter & determination of cut-off frequency | | | | | 1 st ,
16.10.23 | 10. Study of High pass filter & determination of cut-off frequency | | | l l th | 2 | 2 nd
19.10.23 | Analyze the charging and discharging of an R-C & R-L circuit with oscilloscope and Compute the time constant from the tabulated data and determine the rise time graphically | | | | | 1st | | | | 12th | 2 | 30.10.23 | 11. Analyze the charging and discharging of an R-C & R-L circuit with oscilloscope and Compute the time constant from the tabulated data and determine the rise time graphically | | | | | 2nd
2.11.23 | Analyze the charging and discharging of an R-C & R-L circuit with oscilloscope and Compute the time constant from the tabulated data and determine | | | | 1st | | | |-----------------|-----------------------------|--|--| | | 6.11.23 | 12. Construct the Superposition theorem CIRCUIT using P-Spice/MATLAB software and compare the measurements and waveforms | | | | 2nd
9.11.23 | 12. Construct the Series Resonant Circuit circuits using P-Spice/MATLAB software and compare the measurements and waveforms | | | 2 | 1st
13.11.23 | 12. Construct the Series Resonant Circuit circuits using P-Spice/MATLAB software and compare the measurements and waveforms | | | | 2nd
16.11.23 | Construct theTransient Response in R-L-C series circuit Circuit using P-Spice/MATLAB software and compare the measurements and waveforms | | | 2 | 1st
2011.23 | practice | | | | 2nd
23.11.23 | practice | | | 1 | 1 st
30.11.23 | sessional | | | Total class -93 | 2M 223 | | 14 | | | 2 | 2 1st 13.11.23 2nd 16.11.23 2 1st 2011.23 2nd 23.11.23 1st 30.11.23 | 2 1st 15.11.23 2. Construct the Series Resonant Circuit circuits using P-Spice/MATLAB software and compare the measurements and waveforms 2 1st 12. Construct the Series Resonant Circuit circuits using P-Spice/MATLAB software and compare the measurements and waveforms 2 2 2nd 2. Construct the Transient Response in R-L-C series circuit Circuit using P-Spice/MATLAB software and compare the measurements and waveforms 2 2 1st 2011.23 2nd 23.11.23 2nd 23.11.23 2nd 23.11.23 3.1 |