

Orissa School of Mining Engineering Keonjhar

Department of Electrical Engineering Lesson Plan(Energy conversion-II)

VISION OF OUR DEPARTMENT:

To provide excellent knowledge and enrich the problem solving skills of the students in the field of Electrical Engineering with a focus to prepare the students for industry need, recognized as innovative leader, responsible citizen and improve the environment.

MISSION OF OUR DEPARTMENT:

- 1. Prepare the students with strong fundamental concepts, analytical capability, and problem solving skills. Create an ambience of education through faculty training, selflearning, sound academic practices and research endeavors.
- 2. Provide opportunities to promote organizational and leadership skills in students through various extra- curricular and co-curricular events.
- 3. To make the students as far as possible industry ready to enhance their employability in the industries.
- 4. To improve department industry collaboration and to maintain effective operational environment.

Program Educational Objectives

The Program Educational Objectives (PEOs) of the Electrical Engineering Department are given below:

- 1. PEO1- To engage in Design of Systems, tools and applications in the field of electrical Engineering and allied engineering Industries.
- 2. PE02- To apply the knowledge of electrical engineering to solve problems of social relevance and/or pursue higher education
- 3. PE03-To work effectively as individuals and as team members in multidisciplinary projects by exhibit leadership capability, triggering social and economic commitment and inculcate community services and protect environment
- 4. PEO4- Engage in lifelong learning, career enhancement and adapt to changing professional and societal needs.

Subject : ENERGY CON	VERSION II (01/08	/2023- 30/11/2023)	
Discipline: Electrical	Engineering	Name of the Faculty: Suchisr	nita Sahoo
Course Code:	TH-2	Semester:	5111
Total Periods:	60	Examination:	2023(Winter)
Theory Periods:	4P/W	Class Test:	20
Maximum Marks:	100	End Semester Examination:	80

Week		ss/period	Theory Topics
1 st		h date	
	1 st	01/08/23 1p	INTRODUCTION Briefing Syllabus discussion
	2 nd	02/08/2023 1p	1.ALTERNATOR:
	3rd	04/08/2023 1p	1.2 Basic working principle of alternator and the relation between speed and frequency
2 nd	1 st		1.3 Terminology in armature winding and expressions for winding factors (Pitch factor, Distribution factor).
	2 nd	08/08/2023 1p	1.4 Explain harmonics, its causes and impact on winding factor.
	3rd	09/08/2023 1p	1.5 E.M.F equation of alternator. (Solve numerical problems).
	4 th		1.6 Explain Armature reaction and its effect on emf at different power factor of load.
3 rd	1 st	14/08/2023 1p	1.7 The vector diagram of loaded alternator. (Solve numerical problems)
	2 nd	16/08/2023 1p	1.8 Testing of alternator (Solve numerical problems) 1.8.1Open circuit test. 1.8.2 Short circuit test
	3rd	18/08/2023 1p	1.9 Determination of voltage regulation of Alternator by direct loading and synchronous impedance method. (Solve numerical problems)
4th	1 st	21/08/2023 1p	 1.10 Parallel operation of alternator using synchro-scope and dark & bright lamp method. 1.11 Explain distribution of load by parallel connected alternators.
	2 nd	22/08/2023 1p	REVISION
	3rd	23/08/2023 1p	2. SYNCHRONOUS MOTOR: 2.1 Constructional feature of Synchronous Motor.
	4 th	25/08/2023 1p	2.2 Principles of operation, concept of load angle2.3 Derive torque, power developed.
5 th	1 st	28/08/2023	2.4 E. fect of varying load with constant excitation. 2.5 E fect of varying excitation with constant load.
	2 nd	29/08/2023 1p	2.6 Power angle characteristics of cylindrical rotor motor.2.7Explain effect of excitation on Armature current and power factor.
	3rd	01/09/2023 1p	2.8 Hunting in Synchronous Motor.2.9 Function of Damper Bars in synchronous motor and generator.
6 th	1 st	04/09/2023 1p	2.10 Describe method of starting of Synchronous motor.2.11 State application of synchronous motor.
	2 nd	05/09/2023 1p	1 st class test
	3rd	08/09/2023 1p	REVISION AND DOUBT CLEARING

th	1 St	' P	3.1 Production of rotating magnetic field.
	2 nd	12/09/2023 1p	3.2 Working principles of operation of 3-phase Induction motor
	3rd	13/09/2023 1p	3.3 Constructional feature of Squirrel cage and Slip ring induction motors.
		15/09/2023	3.4 Define slip speed, slip and establish the relation of slip with rotor quantities.
	4 th	1p	quantities.
8 th	1 st	18/09/2023 1p	quantities. 3.5 Derive expression for torque during starting and running conditions and derive conditions for maximum torque.
	2 nd	22/09/2023 1p	(solve numerical problems)
9 th	1 st	25/09/2023 1p	3.6 Torque-slip characteristics.
	2 nd	26/09/2023 ^{1p}	3.7Derive relation between full load torque and starting torque etc. (solve numerical problems)
	3rd	27/09/2023 1p	numerical problems) 3.8 Establish the relations between Rotor Copper loss, Rotor output and Gross Torque and relationship of slip with rotor copper loss.
10 th	1 st	03/10/2023	3.9 Methods of starting and different types or etam.
	2 nd	1p 04/10/2023	3.10 Explain speed control by Voltage Control, Rotol Testers
	3rd		3.11 Plugging as applicable to three phase induction.
11 th	1 st	1p 09/10/2023	3.12 Describe different types of motor enclosures.
	2 nd	1p 10/10/2023	3.13 Explain principle of Induction Generator and state its applications
	3rd		REVISION AND DOUBT CLEARING
		1p 13/10/2023 1p	INTERNAL ASSESMENT
12 th	4 th		4.SINGLE PHASE INDUCTION MOTOR 4.1 Explain Ferrari's principle
	2 nd	1p 17/10/2023	4.2 Explain double revolving field theory and Cross-field theory
	3rd	1p 18/10/2023 1p	starting torque of 1-phase induction motor 4.3 Explain Working principle, Torque speed characteristics, performance characteristics and application of single phase motors. 4.3.1Split phase motor.
	4 th	20/10/2023	4.3.2Capacitor Start motor
13 th	1 st		4.3.3 Capacitor start, capacitor run motor.
	2 nd	1p 27/10/2023 1p	4.3.4Permanent capacitor type motor.
14 th	1 st	30/10/2023 1p	4.3.5 Shaded pole motor. 4.4 E. plain the method to change the direction of rotation of above motors.
	2 nd	31/10/2023 1p	 5.COMMUTATOR MOTORS: 5.1 Construction, working principle, Running characteristic and application of single phase series motor.

6

-			
	3rd	01/11/2023	s a motors
	4 th	1p	5.2 Construction, working principle and application of Universal motors
	4."	03/11/2023 1p	5.3 Working principle of Repulsion start Motor.
15 th	1 St	06/11/2023 1p	Repulsion start Induction run motor, Repulsion Induction motor.
	2 nd	07/11/2023 1p	REVISION AND DOUBT CLEARING
	3rd	08/11/2023 1p	6.SPECIAL ELECTRICAL MACHINE: 6.1 Principle of Stepper motor.
		10/11/2023 1p	6.2 Classification of Stepper motor6.3 Principle of variable reluctant stepper motor.
	4 th		
16 th	1 st	13/11/2023 1p	6.4 Principle of Permanent magnet stepper motor.
	2 nd	14/11/2023 1p	6.5 Principle of hybrid stepper motor. 6.6 Applications of Stepper motor.
	3rd	15/11/2023 1p	7.THREE PHASE TRANSFORMERS:
	4 th	17/11/2023 1p	7.2 Explain parallel operation of the three phase transformers
17 th	1 st	20/11/2023 1p	7.3 Explain tap changer (On/Off load tap changing)
	2 nd	21/11/2023 1p	7.4 Maintenance Schedule of Power Transformers .
	3rd	22/11/2023 1p	REVISION AND DOUBT CLEARING
	4 th	24/11/2023 1p	2nd class test
18 th	1 st	28/11/2023 1p	VST 1
	2 nd	29/11/2023 1p	VST 2

LECTURER LECTURER

44AB3 HOD PRINCIPAL PRINCIPAL