Orissa School of Mining Engineering Keonjhar ## **Department of Mechanical Engineering** Lesson Plan w.e.f 10.03.2022-30.06.2022 | Subject: Theory of Machines | | | | | |------------------------------------|------|---|-----------------|--| | Discipline: Mechanical Engineering | | Name of the Faculty: Dr .Níharíka Mohanta | | | | Course Code: | TH-1 | Semester: | 4 RD | | | Total Periods: | 60 | Examination: | 2022(SUMMER) | | | Theory Periods: | 4P/W | Class Test: | 20 | | | Maximum Marks: | 100 | End Semester Examination: | 80 | | | Week | Class Day | Theory Topics | |-----------------|-----------------|--| | 1 st | 1 st | Chapter 1: Simple mechanism, Link, Types, Pair , Types | | | | of Pair | | | 2 nd | Kinematic Chain, Types | | | 3 rd | Mechanism, Machine, Structure, Difference | | | 4 th | Four bar mechanism, Grashof's equation | | 2 nd | 1 st | Inversion, Inversion of Four bar chain mechanism | | | 2 nd | Inversion of Single Slider crank mechanism | | | 3 rd | Inversion of Double Slider crank mechanism | | | 4 th | Cams and Followers | | 3 rd | 1 st | Chapter 2 Friction, Friction on inclined surface | | | 2 nd | Friction between nut and screw of a square thread | | | 3 rd | Friction in screw jack | | | 4 th | Numerical | | 4 th | 1 st | Bearing and its classification, Description of roller, needle roller& ball bearings. | | | 2 nd | Torque transmission in flat pivot& conical pivot bearings. | | | 3 rd | Flat collar bearing of single and multiple types | | | 4 th | Numericals | | 5 th | 1 st | Torque transmission for single and multiple clutches | | | 2 nd | Numericals | | | 3 rd | Working of simple frictional brakes | | | 4 th | Working of Absorption type of dynamometer | | 6 th | 1 st | Chapter 3 Power Transmission | | | | Concept of power transmission, | | | | Type of drives, belt, gear and chain drive. | | | 2 nd | Computation of velocity ratio in belt drive, Length of open belt drive | | | 3 rd | Length of cross belt drive, with and without slip | | | 4 th | Ratio of belt tensions, centrifugal tension and initial tension. | | |------------------|-------------------|---|--| | 7 th | 1 st | Power transmitted by the belt. Numerical | | | / | 2 nd | Determination of belt thickness and width for given permissible stress | | | | | for open and crossed belt considering centrifugal tension. | | | | 3 rd | Crowning of pulleys, V-belts and V-belts pulleys. | | | | 4 th | Gear drives and its terminology. | | | 8 th | 1 st | Gear drives and its terminology | | | | 2 nd | Gear trains, working principle of simple, compound, reverted gear train | | | | 3 rd | Epicyclic gear trains, derivation | | | | 4 th | Numerical | | | 9 th | 1 st | Chapter 4: Governors and Flywheel, | | | | | Function of governor, Classification of governor | | | | 2 nd | Working of Watt Governor, height of governor | | | | | Numerical | | | | 3 rd | | | | +h | 4 th | Working of Porter Governor | | | 10 th | 1 st | Numerical | | | | 2 nd | Working of Proel Governor | | | | 3 rd | Working of Hartnell Governor | | | | 4 th | Sensitivity, Stability and Isochronisms, Hunting of governors | | | 11 th | 1 st | Function of flywheel, Comparison between flywheel &governor. | | | | 2 nd | Fluctuation of energy and coefficient of fluctuation of speed | | | | 3 rd | Numerical | | | | 4 th | Numerical | | | 12 th | 1^{st} | Chapter 5: Balancing of Machine, | | | | | Concept of static and dynamic balancing. | | | | 2 nd | Static balancing of rotating parts | | | | 3 rd | Static balancing of rotating parts | | | | 4 th | Numericals | | | 13 th | 1 st | Principles of balancing of reciprocating parts. | | | | 2 nd | Principles of balancing of reciprocating parts. | | | | 3 rd | Causes and effect of unbalance | | | | 4 th | Difference between static and dynamic balancing | | | 14 th | 1 st | Chapter 6: Vibration of machine parts, Introduction to Vibration and | | | | | related terms (Amplitude, time period and frequency, cycle) | | | | 2 nd | Classification of vibration | | | | 3 rd | Basic concept of natural vibration | | | | 4 th | Basic concept of Forcrd vibration | | | 15 th | 1 st | Basic concept of Damped vibration | | | | 2 nd | Torsional vibration. | | | | 3 rd | Longitudinal vibration | | | | 4 th | Causes & remedies of vibration | |