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MET-301 STRENGTH OF MATERIAL

CHAPTER 1.0

SIMPLE STRESS AND STRAIN

1.1 - Types of Load

Load is an external force. Hydraulic force, steam pressure, tensile force, compressive force,

shear force, spring force and different types of load. Again load may be classified as live load, dead

load.

Definition

Strength of material is the study of the behaviour of structural and machine members under

the action of external loads, taking into account the internal forces created and resulting deformation.

Types of load

The simplest type of load (P) is a direct pull or push, known technically as tension or
compression.

If a member is in motion the load may be caused partly by dynamic or inertia forces. For

instance, the connecting Rod of a reciprocating engine, load on a fly wheel.

STRESS

 Definition

The Force transmitted across any section, divided by the area of that section, is called intensity

of stress or stress.

Where

  - Stress

P - Load

A -  Area

 A - Internal forces of cohesion

Direct stress (Tensile / compressive)

Stresses which are normal to the plane on which they act are called direct stresses and

either tensile or compressive.

Unit - N / m2

STRAIN

Stain is a measure of the measure of the deformation produced in the member by the load.

If a rod of length L is in tension and the elongation produced is L, then the direct

strain=
Elongation

Original length

X

L


Tensile strain will be positive compressive strain will be negative.

P P

P P

X

X

P P

X

X

 A  AP

A
 

Edited with the trial version of 
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping
Free Hand

Line

Free Hand



[2]

Hooke’s Law

This states that strain is proportional to the stress producing it.

A material is said to be elastic if all the deformations are proportional to the load.

Principle of superposition

It states that the resultant strain will be the sum of the individual strains caused by each load

acting separately.

Young’s Modules

Within the limits for which Hooke’s law is obeyed, the ratio of the direct stress to the strain

produced is called young’s modules or the modules of Elasticity, i.e. E = E=




For a bar of uniform cross-section A and length L this can be written as E=
PL PL

or X
AX AE



Tangential Stress

If the applied load persists of two equal and opposite parallel forces not in the same line, then

there is a tendency for one part of the body to slide over or shear from the other part across any

section LM.

 
P

A

Shear stress is tangential to the area over which it acts.

Every shear stress is accompanied by an equal complementary shear stress.

Shear Strain

The shear strain or slide is  , and can be defined as the change in the right angle. It is

measured in radians.

Modules of rigidity

For elastic material shear strain is proportional to the shear stress.

Ratio 
Shear Stress

Modulesof rigidity
Shear Strain

Ratio 





G  N/mm2

P

P

L M Area of gross section

is parallel to load

)



Edited with the trial version of 
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping


[3]

1.2 Stresses in composite section

Any tensile or compressive member which consists of two or more bars or tubes in parallel,

usually of different materials in called compound bars.

Analysis

A compound bar is made up of a rod of area A, and modules E1 and a tube of equal length of
area A2 and modules E2. If a compressive load P is applied to the compound bar find how the load
is shared. Since the road and tube are of the same initial length and must remain together then the
strain in each part must be the same. The total load carried is P and let if be shared W1 and W2,

 1 2 ,L1=L2

compatibility equation : 1 1

1 1 2 2

W W

A E A E

Equilibrium equation : W
1
 + W

2
 = P

Substituting, W
2
 =

2 2
1

1 1

A E
x W

A E

 







)( 2 2
1

1 1

1 1
1

1 1 2 2

2 2
2

1 1 2 2

A E
f r o m ( i ) & ( i i ) g iv e n W 1 P o r

A E

P A E
W

A E A E

P A E
T h e n W

A E A E

Example

A composite bar is made up of a brass rod of 25m diameter enclosed in a steel tube, being

co-axial of 40mm external diameters and 30mm internal diameter as shown below. They are securely

fixed at each end. If the stress in brass and steel are not to exceed 70MPa and 120 MPa respectively

find the load (P) the composite bar can safely carry.

Also find the change in length, if the composite bar is 500mm long. Take E for steel Tube as

200 GPa and brass rod as 80 GPa respectively.

Data Given

Let steel tube denoted as 1 and brass rod denoted as 2

d10= 40mm E1 = 200GPa

d1i = 30mm E2 = 80 GPa

d2 = 25mm

 1= 120 MPa W1 - Load carried by tube

 1= 70 MPa W2 - Load carried by rod.

PP 25mm

500 mm
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

 
   

 


 



 

 

  

 

From compatibility equation : 

W W
1 2

A E A E
1 1 2 2

2 2 2 2A (d d ) (40 30 )
1 1 14 4iO

2A 500mm
1

2 2andA 25 491mm
2 4

Now putting inequation (1)

550 x 200
W W x

1 2 491x 80

W 2.8W
1 2

W A 120 x 550 66000N
1 1 1

W 660001andW 2357N
2 2.82.8

  

  

    


 

Fromequlibriumequation

P W W
1 2

66000 2357 89.57KW (Ans)

Changeinlength

W 66000 x 5001 1 0.3mm
1 2 3A E 550 x 200 x101 1

Poisson’s Ratio

The ratio between lateral strain to the liner strain is a constant which is known as poisson’s
ratio.

The symbol is ‘ ’.

Bulk Modules

When a body is subjected to three mutually perpendicular stresses of equal intensity the

ratio of direct stress to the corresponding volumetric strain is known as bulk modules.

Fig. K 





P

V / V

P - hydrostatic pressure

(-) - negative sign taking account of the reduction in volume.

 

P P

P
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Relation between K and E

The above figure represents a unit cube of material under the action of a uniform pressure P.

It is clear that the principle stresses are -P, -P and -P and the linear strain in each direction is

-P/E + P/E + P/E = 
P

A
 (1-2)

But we know

Volumetric strain = sum of linear strain

By defination K 





P

V / V

 





 


 

P
o r K

3P
(1 2 )

E

E
o r K

3 (1 2 )

or E = 3K (1-2)

Relation between E and G

It is necessary first of all to establish the relation between a pure shear and pure normal

stress system at a point in an elastic material.

In the above figure the applied stresses are  tensile on AB and  compressive on BC. If the

stress components on a plane AC at 450 to AB are    and    Then the forces acting are as

shown taking the area on AC as units.

Resolving along and at right angle to AC





 
   

 
   

Sin 45 Cos 45
2 2

and Cos 45 Sin 45 0
2 2

So a pure shear on planes at 450 to AB and BC.

 

(450

2



2



A B

C

 

 
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This figure shows a square element ABCD, sides of unstrained length 2 units under the

action of equal normal stresses,   tension & compression. then it has been shown that the element

EFGH is in pure shear of equal magnitude  .

 

 



  

 
    





L ine r s tra in  in  d irec tion  E G =
E E

S a y (1 )
E

L ine r s tra in in d ire ctio n H F
E E

Hence the strained lengths of EO and HO are I + ε  and I -ε  respectively..

The shear strain 



G

on one element EFGH and the angle EHG will increase by to
4


 and angle EHO = 

4 2

 


   

   
 

 

 


 


   












 
  



E0
Considering the triangle tan EHO =

H0

1
tan

4 2 1

tan tan
1 4 2tan
1 1 tan .tan

4 2

1
2

1
2

2

(1 )
2G

( )

then rearranging E= 2G (1+)

by removing , 
9GK

G 3K
E 



A B

CD

E

G

 H F 

 







 

1+E

1-- E

( π
+
4 2
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1.3 Temperature stress

Determination of temperature stress in composite bar (single core).

Temperature stresses in Composite Bar

If a compound bar made up of several materials is subjected to a change in temperature

there will be tendency for the components parts to expand different amounts due to the unequal co-
efficient of thermal expansion. If the parts are constrained to remain together then the actual change

in length must be the same for each. This change is the resultant of the effects due to temperature

and stresses condition.

Now let  1
 = Stress in brass

 1
  = Strain in brass

 1
 = Coefficient of liner expausion for brass

A
1
   = Cross sectional area of brass bar

and 
2
,  2

 ,  2
, AA

2
 = Corresponding values for steel.

  = Actual strain of the composite bar per unit length.

As compressive load on the brass in equal to the tensile load on the steel, therefore

 1
. A

1
  = 2

. A
2

strain in brass  1
 =  1

 t - 

 2
=  - 2 t 

2

 1
 + 2

 = 1 t 
1
+ 2 t 

2
  = 1 2t ( )  

1

Thermal stresses in simple bar

Let L = original length of the body

t = Increase in temperature

 = Coefficient of liner expansion.

We know that the increase in length due to increase of temperature

 

   

  
     

  

L L t

L L t
t

L L

Stress E

Example -1

An aluminium alloy bar fixed at its both ends is heated through 20K find the stress developed

in the bar. Take modules of elasticity and coefficient of linear expansion for the bar material as 80

GPa and 24 X 10-- 6/K respectively.

Data Given

t = 20K

E = 80GPa = 80 X 103 N/mm2

 = 24 X 10-- 6/K
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Solution

Then the thermal stress

6 3

2

t tE 24 x10 x20x80x10

38 4 N mm 38 4mPa

   

 . / .

Example - 2

A flat steel bar 200mm X 20mm X 8mm is placed between two aluminium bars 200mm X

20mm X 6mm. So as to form a composite bar. All the three bars are fastened together at room

temperature. Find the stresses in each bar where the temperature of the whole assembly in raised

through 500c, Assume E
s
=200GPa, E

a
=80GPa, 

6 0 6 0
s a12x10 c 24x10 c    / , /

Data given

Aluminium 6mm

Steel 8mm

Aluminium 6mm

t = 500c, Es = 200GPa = 200 x 103 N/mm2

a=80GPa = 80 x 103 N/mm2

-6 0 -6 0
α =12x10 / c, α =24x10 / c

s a

Solution

As = 20 x 8 = 160 mm2

Aa = 2 x 20 x 6 = 240 mm2

      

 
  



 
  



    

 


  

 




  

    

Aa 240
x A x A 1 5 A

s As 160

s s
s 3s 200 x10

a a
a 3a 80x10

t( )s a a s

s a
3 3200x10 80x10

6 650(24x10 12x10 )

1.5 a aor
3 3200x10 80x10

650x12x10

230N mm 30MPaa

2
1.5 1.5 x30=45 N mm 45MPa

a a

.

,

/

/
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1.4. Strain energy resilience stress due to gradually applied load, suddenly applied load

and compact load.

Strain Energy

The strain energy (U) of the bar is defined as the work done by the load in strain it.

For a gradually applied load or static load the work done is represented by the shaded area in
above figure.

1
U =  P. X

2

1 σ
U = σA L

2 E

1 1σ
σ A L Vol.

2E 2E
 2

Resilience

The strain energy per unit volume usually called as resilience in simple tension or compression

is 
2

2E


.

Proof resilience

It is the value at the elastic limit or at the proof stress for non-ferrous materials.

Strain energy is always a positive quantity and being work units will be expressed as Nm (i.e.

joules)

Example 1

Calculate the strain energy of the bolt as shown below under a tensile load of 10 KN. Show

that the strain energy is increased for the same max stress by turning down the same of the bolt to

the root diameter of the turned, E=20500 N/mm2

Data Given

P= 10 KN, E= 205,000 N/mm2

Solution

It is a normal practice to assume that the load is distributed events over the core.

2 2
cA 16.6 217mm

4


 

Stress in screwed portion =
2

c

P 10,000
46N/mm

A 217
 

Stress in shank =
2

2C

P 10,000
31.8N/mm

A
20

4

 



X

P

Extension

Load

(
(
(

50mm
25mm

  

166mm 20mm
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2 2 2

2

1
Total strain Energy = (46 x210x25 31.8 x314x50) 67N / m m

2 x 205000

If turned to16.6m m

1
S.E (46 x217x75) 84N / m m

2 x 205000

 

 

Impact load

Supposing a weight W falls through a height ‘h’ on to ‘a’ collar attached to one end of a

uniform bar, the other end being fined. Then an extension will be caused which is greater than that
due to one application of the same load gradually applied.

Let X is the maximum extension, set up and the corresponding strain is  .

Let P be the equivalent static load which would produced the same extension X.

Then the strain energy at this instant = 
1 2

1

1
E1 ( )

E

Pd
or E1 (2 )

4t E

  

 

Neglecting loss of energy at compact loss of PE of weight = Gain of strain energy.

2

2

2

1
w(h x) Px

2

PL 1
or w(h ) P L / AE

AE 2

RearrangingandmultiplyingthroughAE/L

P / 2 WP WhAE /L 0

Solvinganddiscardingthenegativeroot

P W W 2WGAE /L

W [1 1 2hAE/ WL]

PL P
From which X , canbe found

AE A

Whenh 0,P 2W

 

 

  

  

  

 

 

i.e. the stress produced by a suddenly applied load is twice the static stress. Ex- Referring
figure-1, let a mass of 100Kg falls 4cm on to a collar attached to a bar of 2 cm dia, 3mm long find

max stress, E= 205,000N/mm2

2

P W
[1 1 2hAE / WL]

A A

981 2x 40 x 100 x205000
, [1 1 ]

100 981x3 x1000

134N/mm

   


  





 

L Area A

W

 G

X
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CHAPTER 2.0.

THIN CYLINDER AND SPHERICAL SHELL

UNDER INTERNAL PRESSURE

2.1. Definition of hoop stress

By symmetry the three principal stresses in the shell will be the

(i) circumferential or hoop stress

(ii) longitudinal stress

(iii) radial stress.

Thin cylinder :

If the ratio of thickness to internal diamer is less than about 1/20, then the hoop stress and

longitudinal stress are constant over the thickness and the radial stress is small and can be
neglected.

2.2 Hoop stress or circumferential stress derivation

Let    d - internal diameter

l - length of cylinder
t - thickness

p - pressure
consider the equilibrium of a half cylinder of length L.

section through a diameteral plane,  1  acts on an area 2tL and the resultant vertical pressure

force is found from the projected area horizontal d x L

Equating forces

1 x 2 x tL = P x d x L

= 1

PD

2t

hoop stress in a tensile stress acts circumferentially on the cylinder.

Longitudinal stress 2 Derivation

Consider the equilibrium of a section cut by a transverse plane, 2 acts on an area 2 , dt

(d should be the main diameter) and pacts on a projected area of 
2d

4


equating the forces.

 
 

L

 

( 1)

 1  1

 

t

P

d

( 2)
P
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2
2

Equatingtheforces

xdt Px d
4


 

Whatever the actual shape of the end

2

Pd
i.e.

4t
 

In case of long cylinder or tubes this stress may be neglected.

Thin spherical shell under internal pressure derivation

Again the radial stress will be neglected and the circumferential or hoop stress will be neglected
and by symmetry the two principal stresses are equal, in fact the stress in any tangential direction

is equal to  .

From above figure it is seen that

2dt P d
4

Pd
i.e.

4t


 

 

Volumetric strain

Hoop Strain

1 1 2

1

1

1
( )

E

Pd
or (2 )

4t E

  

 





Longitudinal Strain

2 2 1

1
( )

E
  

 

P

t

d - internal diameter

 

( 2)( 2)

 1

 1


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Volumetric Strain on capacity

The capacity of a cylinder 2d L
4


 If the dimension is increased by dand L,thevolumetricstrain 

2

2

2 2 2 2 2

2

2 2

(d d)(L L) d L

d L

[d L d L 2 d.dL 2 d.d. L d L d Ld L]

d L

(d L 2 d.dL) / d L

2. d / d L /L

2 x diameteralstrain longitudinalstrain

2 x hoop strain longitudinalstrain

    


           


   

   

 

 

Change in volume = (21
+2

) volume

For spherical shell, volume strain = 3 x hoop strain

Change in diameter = 1
.d

Change in length = 2
. L

Example – 1

A gas cylinder of internal diameter 40mm is 5mm thick, if the tensile stress in the material is
not to exceed 30 MPa, find the maximum pressure which can be allowed in the cylinder.

Data given

D = 40mm, t = 5m

 1= 30MPa = 30 N/mm2

Solution

1

Pd
weknow,

2t

P x 40
or, 30

2 x5

P 7.5MPa

 



 

Example – 2

A cylindrical thin drum 80mm diameter and 4m long is made 10mm thick plates. If the drum
is subjected to an internal pressure of 2.5MPa determine its changes is diameter and length. E =
200GPa.

Data given

d = 80 mm

L = 4m

T = 10mm

P = 2.5 N/mm2

E = 200 x 3 210 N/mm
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Solution

1

1 3

2

1 3

Pd
(2 )

4tE

2.5 x 800
(2 0.25)

4 x10 x 200 x10

2.5 x 800
d x d x1.75

4 x 200 x10

0.35mm (Ans)

ε

ε

ε

 

 

  



Change in length

2

2

3

3

Pd 1
( )

2tE 2

L L

PdL 1
( )

2tE 2

2.5 x 800 x 4 x10 1
( 0.25)

4 x10 x 200 x10 2

0.5mm(Ans)

ε

ε

 

 

 

 



Example – 3

A cylindrical vessel 2m long and 500mm dia with 10mm thick plates in subjected to an internal
pressure of 3MPa, calculate the change in volume of the vessel.

E= 200GPa,   = 0.3

Data given

L = 2 x 103 mm

d = 500 mm

t = 10mm

P = 3MPa

E = 200 x 3 210 N/mm



  

 



 
 



2

3

3

2 2 3

6 3

Pd 1
( )

2tE 2

3 x 500 1
( 0.3)

2 x10 x 200 x10 2

0.075 x10

V d L x 500 x 2 x10
4 4

392.2 x10 mm

Change in Volume

= V (2
1
-

2
)

= 392.7 (2x.32x103 + .075 x 10-3)

= 185 x 10-3mm 3
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CHAPATER. 3.0

TWO DIMENSION STRESS SYSTEMS

3.1 Determination of normal stress, shear stress and resultant stress on oblique plane.

In many instances, however, both direct and shear stresses are brought into play, and the
resultants stress across any section will be neither normal nor tangential to the plane.

If r  Is the resultants stress making an angle  with the normal to the plane on which of acts.






    2 2

r

tan

Stress on oblique plane

The problem is to find the stress acting on any plane AC at an angle   to AB. This stress will

not be normal to the plane, and may be resolved into two components   and 
 .

As per Figure 3.4 show the stresses acting on the three planes of the triangular prism ABC.

There can be no stress on the plane BC, which is a longitudinal plane of the bar, the stress   must

be up the plane for equilibrium.

Figure 3.5 shows the forces acting on the prism, taking a thickness t perpendicular the figure.

The equations of equilibrium resolve in the direction of  .

2

. AC. t AB. t Cos

AB
Cos

AC

Cos

)(





   

    

  

(

A B

C



(


Fig 3.1
Fig 3.2

r r 



(A B

C

   







Fig 3.3

A B

C

 AB .t
Fig 3.5

 AC .t

 

 AC .t

A B

C

Fig 3.4

(







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Resolve in the direction 

 









  

  

    

  

   

   

  



2

2 2

r

4 2 2

r

.AC.t AB.tSin

AB
Sin

AC

Cos . Sin

1
Sin2

2

( )

Cos Cos .Sin

Cos

)(

It is seen that maximum shear stress is equal to one-half the applied stress and acts on

planes at 450 to it.

Pure Shear

As the figures will always be right-angled triangles there will be no loss of generality by
assuming the hypotenuse to be of unit length. By making use of these specification it will be found

that the area on which the stresses act are proportional to 1 (for AC), Sin   (for BC) and Sin   (for

AB) and future figures will show the forces acting on such an element.

Let tue  act on a plane AB and there is an equal complementary shear stress on plane BC.

The aim is to find & acting on AC ata angle   to AB.

Resolving in the direction of 

       

 

x1 ( Cos )Sin ( Sin ).Cos

Sin2

Resolving in the direction of 

  

       

   

        2 2
r

x1 ( Sin )Sin ( Cos ).Cos

Cos2 ( 45)downtoplane

at 2 to

Pure Normal stresses on give planes

Let the known stresses be X on BC and Y on AB, then the forces on the element are

proportional to those shown.

A B

C

(





2
r

Cos 

Sin 

A B

C

(






 

YCos 

X Sin 
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Resolving in the direction of 


2 2
Y Xθ

σ σ Cos θ σ Sin θ 

Resolving in the direction of 






     

     

Y X

Y X

Cos Sin Sin Cos

1
( )Sin2

2

General two dimensional Stress system

Resolving in the direction of 

Y X

2 2
2

Y X

2 2

Y X Y X

Cos Cos Sin Sin Cos Sin Sin Cos

1 Cos 1 Cos
Sin

2 2

1 1
( ) ( ) Cos Sin

2 2

( ) ( )

            

   
   

           



Resolving in the direction of 





     

      

       

Y X

Y X

Cos Sin Sin Cos

Cos Cos Sin Sin

1
( )Sin2 Cos2

2

Example – 1

If the stress on two perpendicular planes through a point are 60 N/mm2 tension, 40 N/mm2
compression and 30 N/mm2 shear find the stress components and resultant stress on a plane at

600 to that of the tensile stresses.

A B

C

(






 

YCos 

X Sin 

Cos 

 

Sin 

(



060

 

 



040Sin60

030Sin60

030Cos60

030Cos60
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Resolving

0 0 0 0 0 0 0 0

2

60Cos60 . Cos60 40Sin60 .Sin60 30Cos60 Sin60 30Sin60 Cos60

1 1 3 3 1 3 3 1
60 x x 40 x x 30 x 30 x x

2 2 2 2 2 2 2 2

15 30 7.5 3 7.5 3

11N/mm





    

   

   

 

and

0 0 0 0 0 0 0 0

2

2

1 0 0

r

60Cos60 . Sin60 40Sin60 .Cos60 30Cos60 Cos60 30Sin60 Sin60

15 3 10 3 7.5 22.5

58.3 N/ mm

(112 58.32) 59.3N/mm

atangle to the

58.3
tan 80 15

11


    

   



   

  

Principal Planes

From equation

     Y X

1
( )Sin2 Cos2

2

There are values of  0 for which   is zero and the plane on which the shear component is

zero are called principal planes.

From equation above.

 


   
  Y X

2
tan2 (when 0)

( )

This gives two values of 2   differing by 1800 and hence two values of differing by 900 i.e. the

principle planes are two planes at right angles.




    

  


    

2 2
Y X

Y X

2 2

Y X

2
Sin2

( ) 4

Cos2
( ) 4

58.3



 r

(200 to the 60 N/mm2)

Y X( ) 

(2

2
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Principal Stresses

The stresses on the principal planes will be pure normal (tension or compression) and their
values are called the principal stresses.

We know,


        Y X Y X

1 1
( ) ( )x Cos2 Sin2

2 2


  
   

    

 


    

   
     

    

         

2
Y X

Y X 2 2
Y X

2 2
Y X

2 2
Y X

Y X 2 2
Y X

2 2
Y X Y X

Pr incipalstresses

1
( )

1 2x( )
2 ( ) 4

.2

( ) 4

1
[( ) 4 ]

1 2( )
2 ( ) 4

1 1
x( ) ( ) 4

2 2

Shorter method for principal stresses

Let AC be a principal plane and   the principal stress acting on it X , y and  are the known
stress on planes BC and AB as before.

Resolve in the direction of X

Sin = X Sin +  Cos

xor Cos ......(1)  

Resolve in the direction of y

y

y

Cos Cos Sin

or tan ......(2)

    

  

Multiply corresponding sides of equations (1) and (2) i.e.

  

         

  

  


           


        

2
x y

2 2
x y x y

2

2

2 2
x y x y x y

2 2
x y x y

( ) ( )

or ( ) 0

Solving

ax bx c 1

1b b 4ca
x

2a

Here

( ) ( ) 4 4

2

1 1
or ( ) ( ) 4

2 2

The values of 0 for the principal planes are of course found by substitution of the principal

stresses values in equation (1) & (2).

A B

C

(



 

Cos 

Sin 

 

 

XSin

 y Cos
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Maximum shear stress

Let AB and BC be the principal planes and  1 and  2 the principal stresses.

Then resolve


      

   

2 1

2 1

Cos . Sin Sin .Cos

1
( )Sin2

2

Hence the maximum shear stress occurs when 2 0= 900 i.e. on planes at 450 to the principal

planes and its magnitude is

max 2 1

2 2
x y

1
( )

2

1
[( ) 4 ]

2

    

     

In words : The maximum shear stress is one-half the algebraic difference between the principal
stresses.

Example – 2

At a section in abeam the tensile stress due to bending is 50 N/mm2 and there is a shear

stress of 20 N/mm2. Determine from first principles the magnitude and direction of the principal

stresses and calculate the maximum shear stress.

Solution

Resolve in the direction AB :

Sin 50Sin 20Cos

50 20cot ......(1)

   

  

Resolve in the direction BC :

Cos 20Sin ......(2)

20 tan

  

  

Multiplying corresponding sides of equations (i) and (ii)

  

   

 



  

2

2

( 50) 20

50 400 0

50 10 (25 16)

2

50 64
57or 7

2

A B

C

(






 

Sin 1

 2 Cos

A B

C

(




 

220N/mm xCos

220N/mm xSin

250N/mm xSin
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i.e. the principal stresses are 57 N/mm2 tension, 7 N/mm2 compression, the third being zero.

57 7
tan or

20 20 20

 
 

Giving 0=700 and 1600, being the directions of the principal planes.

Max shear stress =

2 1

2

1
( )

2

1
[57 ( 7)]

2

32N/mm

   

  



and the planes of maximum shear are at 450 to be principle planes i.e. 0=250 and 1150. (Ans)

Maximum shear stress using Mohr’s Circle

The stress circle will be developed to find the stress components on any plane AC which

makes an angle   with AB.

Construction

Mark off PL =  1and PM =  2(positive direction to the right). It is shown here for  2   1,

but this is not a necessary condition. On LM as diameter describes a circle center O.

Then the radius OL represents the plane of  1 (BC) and OM represents the plane of  2(AB)

plane AC is obtained by rotating. AB through  anticlockwise, and if OM on the stress circle is

rotated through 2  in the same direction, the radius OR in obtained which will be shown to represent

the plane AC.

OR could equally will be obtained by rotating OL clockwise through 1800-2  , corresponding

to rotating BC clockwise through 900-  .

A
B

C

 1

2

 


/

 /

(



90 

θ
(


θ

(

1

( L
P

2 

N
M

R

R /

N /

O

2

r

18
0
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Draw RN r to PM

Then PN = PO + ON

       

   
  

    

1 2 2 1

1 2

2 2
1 2

1 1
( ) ( )Cos2

2 2

(1 Cos2 ) (1 Cos2 )

2 2

Sin Cos ) ,thenormalstresscomponent onACθ

 

    



     

2 1

2 2

r

1
and RN ( )Sin2

2

,theshear stresscomponent onAC

Also theresul tant stress

( ) PR

θ

 And its inclination to the normal of the plane is given  RPN

  is found to be a tensile stress and  is considered positive if R is above PM,

The stresses on the plane AD, at right angles for AC, are obtained from the radius OR/, at

1800 to OR

1 1 1 1 1i.e. PN , R N    

and
1

   but of opposite type, tending to give an anticlockwise rotation.

The maximum shear stress occurs when RN=OR , i.e.  =450 and is equal in magnitude to

OR 2 1

1
( )

2
   The maximum value of   is obtained when PR is a tangent to the stress circle.

Two particular cases which have previously been treated analytically will be dealt with by this
method.

1. Pure compression

IF   is the compressive stress the other principal stress is zero.

PL =  numerically, measured to the left for compression, PM = 0

 





 

 

 

     0

1
H e n ce,O R

2

P N,C o m p re ssiv e

P N,P o s it iv e

1
M a xim u m sh e a r stre ss O R o ccu rin g w h e n 4 5 .

2

(

L
2 

N
M

R

O

A B

C

(






 P
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2. Principal stresses equal tension and compression

PM =  to the right

PL =  to the left

Here O coincides with P







 

 



  

 

0

0 0

0

PN,is tensilefor

between 45 ,compressivefor

between45 and135

RN,when 45

reachmaximum ,on planes when the normal stress is zero (Pure shear)

Example -3

A piece of materials is subjected to two compressive stresses at right angles, their values
being 40 N/mm2 and 60 N/mm2. Find the position of the plane across which the resultant stress in

most inclined to the normal and determine the value of this resultant stress.

Solution

 

 

2
1

2
2

60N/mm (Compressure)

40N/mm (Compressure)

In the figure, the angle   is inclined to the plane of the 40 tons N/m2 compression.

In above figure PL =60, PM=40, The maximum angle  is obtained when PR is a tangent to

the stress circle.

OR = 10, PO = 50

 

    

  



1 0

2 2 2
r

0

1
Then Sin 11 30

5

PR (50 10 ) 49N/mm

2 90

39 15

whichgives theplanerequired

/

/

(

L
2 

N
M

R

O

A B

C

(






 





A B

C

(





r

60

(

(

L
2 

PM

R

O

40



P/
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Example -4

At a point in a piece of elastic material there are three mutually perpendicular planes on

which the stresses are as follows : tensile stress 50 N/mm2, shear stress 40 N/mm2 on plane,
compressive stress 35 N/mm2 and complementary shear stress 40 N/mm2 on the second plane,

no stress on the third plane. Find (a) the principal stresses and the positions of the plane on which
they act (b) the position of the planes on which there is no normal stress.

Solution

Mark off PN = 50, NR = 40

PN/ = -35, N/ R/= -40

Join RR/, Cutting NN/ at 0, Draw circle centre O, radius OR

Then ON = 
1

2
NN/

               = 42.5

  

  

2 2OR 42.5 40 58.4

PO PN ON 7.5

(a) The Principal stresses are

PM = PO + OM = 6.5 N/mm2 (tensile)

PL = OL - OP = 50.9 N/mm2 (compressure)

 



0

0

40
or, 2  = tan-1 43 20

42.5

21 40

/

/

(b) If there is no normal stress, then for that plane N and P coincides and

 





0 

0 

7.5
2  = 180 Cos

58.4

2  = 97 24

48 42 to theprincipalplane

/

/

/

(

L
2 

N
M

R

R /

N /

O

( 021 40/

068 20/

50.9

65.9

40

35

40
50

 

P
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CHAPTER 4.0

SHEAR FORCE & BENDING MOMENT
4.1 – Types of beam and load

Beam

A structural member which is acted upon by a system of external loads at right angles to its

axis is known as beam.

Types of Beam

1. Cantilever beam

2. Simply supported beam

3. Over hanging beam

4. Rigidity fixedor built in beams

5. Contimous beam

Types of load

1. Concentrated or point load

2. Uniformly distributed load

3. Uniformly varying load

4.2. Concepts of share force and bending moment

Shear force

The shearing force at any section of beam represents the tendency for the portion of beam to

one side of the section of slide or shear laterally relative to the other portion.

The resultant of the loads and reactions to the left of A is vertically upwards and the since the

whole became is in equilibrium, the resultant of the forces to the right of AA must also be F acting
down ward. F is called the shearing force.

 

 

 

  

   

(1)

(3)

(5)

(4)

(2)

W
W

W W W

 

(1)

(3)

     
  

(2)

   W
1

W
2

W
3

F
A

A
R

1
R

2
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Definition

The shearing force at any section of a beam is the algebraic sum of the lateral component of
the forces on either side of the section.

Shearing force will be considered positive when the resultant of the forces to the left is upwards

or to the right in downward.

A shear force diagram is one which shows the variation of shearing force along the length of
the beam.

Concepts of Bending Moment

In a small manner it can be argued that if the moment about the section AA of the forces to the

left is M clockwise then the moment of the forces to the right of AA must be anticlockwise. M is
called the bending moment.

Definition

The algebraic sum of the moments about the section of all the forces acting on other side of
the section.

Bending  moment will be considered positive when the moment on the left of section is
clockwise and on the right portion anticlockwise. This is referred as sagging the beam because

concave upwards. Negative B.M is termed as hogging. A BMD is one which shows the variation of
bending moment along the length of the beam.

4.3 Shear force and bending moment diagram and its silent features.

i. Illustration in cantilever beam

ii. Illustration in simply supported beam

iii. Illustration in overhang beam

Carrying point load and u.d.L.

Concentrated loads

Example -1

A cantilever of length L carries a concentrated load W at its free end, draw the SF & BM
diagram.
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Solution

At a section a distance x from the free end, consider the forces to the left.

Then F = – W, and in constant along the whole beam for all values of x. Taking moments
about the section given M = -- Wx

A x = 0, M = 0, At –x = L, M =  – WL

At end from equilibrium condition the fixing moment is WL and reactions W.

Example – 2

A beam 10m long is simply supported at its ends and carries concentrated loads of 30 KN
and 50 KN at distance of 3m from each and. Draw the SF & BM diagram.

Solution

First calculate R1 and R2 at support

R1 x 10 = 30 x 7 + 50 x 3

= R1 = 36KN

 and R2 = 30+50 – 36 = 44KN

Let x be the distance of the section from the left hand end.

Shearing force

O < x < 3m, F= 36KN

3 < x < 7, F= 36 -30 = 6 KN

7 < x < 10, F = 36-30-50= -44 KN.

Bending moment

0 < X , 3 M = R1 X = 36 x KNM

3 < X , 7, M = R1 X – 30 (X-3) = 6X +90 KNM

Kx < 10 , 7, M = R1 X – 30 (X-3) – 50 (X-7) = 44 X + 440 KNM

Principal values of M are

at X = 3m, m = 108 KNM

at x = 7m, M = 132 KNM

at x = 10, M = 0.

  

3m 4m 3m
30KN 50KN

R
1

R
2

10m
36

44

6

132

108
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CHAPTER 4

BENDING MOMENT & SHEAR FORCE

Introduction

When any structure is loaded, stresses are induced in the various parts of the structure and
in order to calculate the stresses, where the structure is supported at a number of points, the

bending moments and shearing forces acting must also be calculated.

Definitions

Beam - Beam is structural member which is acted upon by a system of external loads at

right angles to the axis.

Bending - Bending implies deformation of a bar produced by loads perpendicular to its axis
as well as force couples acting in a plane passing through the axis of the bar.

Plane bending - If the plane of loading passes through one of the principal centroidal axes of

the cross section of the beam, the bending is said to be plane.

Point load - A point load or concentrated load is one which is considered to act at a point.

Distributed load - A distributed load is one which is distributed or spread in some manner
over the length of the beam. If the spread is uniform, it is said to be uniformly distributed load. If the

spread is not at uniform rate, it is said to be non-uniformly distributed load.

CLASSIFICATION OF BEAMS

1. Cantilever –  A cantilever is a beam whose one end is fixed and the other end free. Fig. 4.1

shows a cantilever with a rigidity fixed into its support and the other end B free. The length between

A & B is known as the length of cantilever.

2. Simply supported beam – A simply supported beam is one whose ends freely rest on

walls or columns or knife edges.

3. Over hanging beam – An overhanging beam is one in which the supports are not situated

at the ends i.e. one or both the ends project beyond the supports. In Fig. 4.3 C & D are two supports
and both the ends A and B of the beam are overhanging beyond the supports C & D respectively.

4. Fixed beam – A fixed beam is one whose both ends are rigidly fixed or built in into its

supporting walls or columns.

 

Cantilever

Fig 4.1

B
A

   

Simply supported beam

Fig. 4.2
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5. Continuous beam – A continuous beam is one which has more than two supports. The

supports at the extreme left and right are called the end supports and all the other supports, except

the extreme, are called intermediate supports.

SHEAR FORCE

In general if we have to calculate the shear force at a section the following procedure may be

adopted.

(i) Consider the left or the right part of the section.

(ii) Add the forces normal to the member on one of the parts.

If the right  part of the section is chosen, a force on the right part acting downwards is positive

while a force on the right part acting upwards is negative. For instance, if the shear force at a

section x of a beam is required and if the right part x B be considered the forces P &  are positive

while the force R is negative. S.F. at X = P+ Q- R

If the left part of the section be chosen, a force on the left part acting upwards is positive and

a force on the left part downwards is negative. For instance, if the shear force at X of a beam is

required and if X A is the left part, the force Q is positive while the forces 1 2
W & W are negative.

1 2
S.Fat X=Q - W - W

BENDING MOMENT

To find the bending moment at a section of a beam the following procedure may be adopted.

(i)   Consider the left or right part of the section.

(ii)  Remove all restraints and all forces on the part selected

(iii) Now introduce each force or reacting element one at a time and find its effect at the

section (i.e. find whether the moment produces a hogging or sagging effect at the section). Treat

sagging moments as positive and hogging moments as negative.

Note that the moment due to every downward force is negative and moment due to every

upward force is positive.

Shear force and bending moment diagrams.

   

Continuous  beam

Fig. 4.5
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A. CANTILEVER

(i) Cantilever of length L carrying a concentrated load W at the free end.

Fig. 4.7 shows a cantilever AB fixed at A and free at B and Carrying the load W at the free and B.
Consider a section x at a distance of x from the free end.
S.F at X = S   = +W

B.M at X = M  = -W 

Hence, we find that the S.F. is constant at all sections of the member between A & B. But the
B.M at any section is proportional to the distance of the section from the free end.

At   = 0 i.e. at B, B.M = 0

At   = L i.e. at A, B.M = WL

Fig. 4.7 shows the S.F. and B.M diagrams.
(ii) Cantilever of length L carrying a uniformly distributed load of W per unit run over the whole

length.

Fig 4.8 shows a cantilever AB fixed at A and free at B carrying a uniformly distributed load of
W per unit run over the whole span.

B
A

B.M Diagram

(--)

BA

WL

2WL

2

2W

2

W

Fig.4.8

S.F. Diagram

L

A B

W/ unit run

B
A

B.M Diagram

(--)

BA

(WL+W)


2WL

( WL)
2

 

Fig.4.9
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

A B
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X
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X
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Consider any section X distant   from the end B.

S.F at X= S  =+W  , B.M at X = M  = -W 
2χ χ

= - W.
2 2

.

Hence we find that the variation of the shear force is according to a liner law while the variation
of the bending moment is according to a parabolic Law.

At   = 0, S  =0 M =0

At   = L, S  = +WL, M =
2WL

2

(iii) Cantilever of length L carrying a uniformly distributed load of W per unit run over the whole
length and a concentrated load W at the free end.

Fig. 4.10 Shows a cantilever AB fixed at A and free at B and carrying the load system mentioned
above. Consider any section X distant   from the end B. The S.F and the B.M at the section X are

respectively given by

At   = 0, S  =+W, M =
2W

WL
2

( )


At   = 0, S  =+W, M =0

At   = L, S  = +(WL+W), M =
2WL

WL
2

( )

S.F. varies following a liner law while B.M varies following a parabolic Law.

(iv) cantilever of length L carrying a uniformly distributed load of W per unit run for a distance

a from the free end.

Fig. 4.10 shows a cantilever AB fixed at A and free at B and carrying the load system mentioned
above.

Consider any section between D and B distant   from the free end B.

S.F and B.M at the section are given by S  =+W  , M =
2W

2



The above relations hold good for all values of x between  =0 and  =a (i.e. between B & D)

Hence for this range the S.F. varies following a linear Law while the B.M varies following a

parabolic Law.

At   = 0, S  =0 M =0

B
A

Straight

(--)

BA

Wa

Fig.4.10

A B

W/ unit run

a

L

D
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D
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At   = a, S  = +Wa and M =
2W a

2


Now consider any section between D & A, distant   from the end B.

The S.F & B.M at this section are given by

S  = +Wa and M =
a

Wa( )
2

  

Hence between A & D, S.F. is constant at +Wa b but the B.M varies according to a linear law.

At   = a, M = -Waa
a

2
(a ) =

2Wa

2


At   = L, M = -Wa a 
a

2
(L )

Problem

Fig. shows a cantilever subjected to a system of loads. Draw S.F & B.M diagrams.

Solution – At any section between D & E, distant x from E.

S.F = S   +500kg

B.M = M  = -500 

At   = 0, M  = 0

At   = 0.5m, M = -500 x 0.5 = -250kg.m

At any section between C &D, distant   from E,

S.F = S   = +500+800=+1300Kg

B.M = M  = -500x – 800 (x-0.5) = -1300x + 400

At   = 0.5, M  = -1300 x 0.5+400 = -250Kg.m

At   = 1M, M  = -1300 + 400 = -900 Kg.m

At any section between B & E, distant x from E

S.F = S  = +500 + 800 +300 = 1600Kg

B.M = M  = -500x – 800(x-0.5) – 300 (x-1) Kg. M = -1600x + 700 Kg.m

At   = 1m, M  = -1600 + 700 = -900 Kg.m

At   = 1.5m, M  = -1600 x 1.5 + 700 = -1700 Kg.m

At any section between A & B distant x from E.

S.F = S   = +500+800+300+400 = 2000Kg

B.M = M  = -500x -800(x-0.5)-300 (x-1) – 400 (x-1.5) = -200x + 1300Kg.m

At   = 1.5m, M  = -2000 x 1.5 + 1300 = -1700Kg. m

At   = 2m, M  = -2000 x 2 + 1300 = -2700 Kg.m

Beams freely supported at the two ends.

 

2m

E

   
0.5m 0.5m 0.5m 0.5m

400 kg 300 kg 800 kg 500 kg
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A
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(i) Simply supported beam of span L carrying a concentrated load at mid span.

Fig 4.12 shows a beam AB simply supported at the ends A & B. Let the span of the beam be

L and let the beam carry a concentrated load W at mid span.

Since the load is symmetrically placed on the span, reaction on the span, reaction at each

support =
w

2

w
R R

A B 2
  

For any section between A & C 
w

S.F S
2

 

For any section between C & B SF = 
w

S.F S
2

 

At the section C the S.F changes from 
w w

to
2 2

 

At any section between A & C distant   from the end A,
the bending moment is given by,

M  = 
w

(saggingmoment)
2

 

At   = 0, M = 0

At   = 
L

2
, Ma= 

WL

4

Hence the B.M increased uniformly from zero at A to 
WL

4
 at C.

Similarly the B.M decreases uniformly from 
WL

4
at C to zero at B. Maximum bending moment

occurs at mid span i.e. at C where the S.F changes its sign.

(ii) Simply supported beam carrying a concentrated load placed eccentrically on the span.

Fig. 4.13 shows a simply supported beam AB of span L carrying a concentrated load W at D
eccentrically on the span.

Let AD = a & DB = b

Let a bR & R  be the vertical reactions at A & B

For equilibrium of the beam,

Taking moments of the forces on the beam about A,

we have

 

b

b

b

a

R Wa

Wa
R

L

Wa W(L a)
R W

L L

Wb
R

L



 


   

 

Since a+b = L for any section between A and D

the shear force = S   = Va = + 
Wb
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
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For any section between D & B, the shear force = S   = b

W b
R

L
 

At any section between A & D distant x from A, the bending moment is given by

M  = + Wb
(sagging)

L


At   = 0, M  = 0

At   = 0, M  =
Wab

L

Hence the B.M increases uniformly from zero at the left end A to W ab

L
at D. Similarly the B.M

will decrease uniformly from W ab

L
at D to zero at the right end B.

It may be observed from the S.F and B.M diagrams that the maximum B.M occurs at D

where the S.F. changes its sign.

(iii) Simply supported beam carrying a
number of concentrated loads.

Fig. 4.14 shows a simply supported beam

AB of span 8 meters carrying concentrated loads

of 4KN, 10 KN & 7 KN at distances of 1.5 meters,

4 meters & 6 meters from the left support.

S.F between C & D = + 10 – 4 = +6KN

S.F between D & E = +10 – 4 – 10 = – 4KN

S.F between E & B = +10 – 4 – 10 – 7 = –11KN

B.M at A = 0

B.M at C = +10 x 1.5 = +15KNm (Sagging)

B.M at D = +10 x 4 – 4 x 2.5 = +30 KNm

(Sagging)

B.M at E = +11 x 2 = +22 KNM (Sagging)

It may be observed from the S.F & B.M
diagrams that the maximum B.M occurs at D where

the S.F changes its sign.

(iv) Simply supported beam carrying a
uniformly distributed load of W per unit run over

the whole span.

Fig. 4.15 shows a simply supported beam
AB of span L carrying a uniformly distributed load

W per unit run over the whole span. Let Ra & Rb
be the vertical reactions at the supports A & B

respectively.

Since the loading is symmetrical on the span,
each vertical reaction equals half the total load on

the span.
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a b

WL
R R

2
  

Consider any section X distant   from the left end A.

S.F & B.M at the section X are given by

a

2 2

a

2

WL
S R W W

2

W WL W
M R

2 2 2

W
M (L )

2

WL
At 0,S ,M 0

2

WL WL
At L,S WL ,M 0

2 2

L WL WL WL L L WL
At ,S 0& M . (L )

2 2 2 2 2 2 8

     

 
     

     

  

    

      

The S.F diagram is a straight line. The S.F uniformly changes from 
WL

2
  At A to 

WL

2
 At B &

obviously that S.F at Mid span is zero.

The B.M diagram is a parabola. The B.M increases according to a parabolic law from zero at

A to 
2WL

2
  at the mid span C and from this value the B.M decreases to zero at B following the

parabolic law.

(v) Beam with overhanging at one end and carrying a uniformly distributed load over the

whole length.

Fig. 4.16 shows a simply supported beam ABC with supports at A & B, 6 meters apart with on
over hang BC 2 meters long.

Let a bR &R be the vertical reactions at A & B. For the equilibrium of the beam, taking momentss

about A,

we have Ra x 6 = 1.5 x 8 x 4

Rb = 8 tones

Ra = 1.5 x 8 -8 = 4 tones

S.F at the left end = +4t

S.F just on the left hand side of B = +4-1.5 x 6 = -5t

S.F. just on the right hand side of B = +1.5 x 2 = 3t

S.F at C = 0

Let S.F be zero at   meters from A,

equating the S.F to zero,

we get S   = 4-1.5   =0 
8

2.67m
3

  

A
B

A B

B.M. Diagram

S.F. Diagram

Fig. 4.16
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B.M at A = 0, At any section in AB distant x from A the B.M is given by

M  = 4   – 1.5 
2X

2

Hence the B.M diagram is parabolic

max

2

28 8 1.5 8 16
B.Mat MB M 4 x 5.33tm

3 3 2 3 3

1.5
B.Mat 6m i.e. atB 4 x6 x6 3tm

2

( )    

    

Section at which the B.M is Zero

Since at 
8

3
  the B.M is +5.33 tm & at x = 6m the B.M is -3tm there must be a section where

the B.M is zero. This section can be determined by equating the general expression for B.M to

zero. i.e. by the equation

2

4 1.5 0
2

(4 0.75 ) 0

16
0& 5.33m

3


 

   

  

Let the B.M be zero at O, AO = 
16

m
3

The point O where the B.M is zero called the point of contra flexure or point of inflexion.

For all sections from A to O the B.M is of the sagging type while for all sections between O &

C the B.M is of the hogging type.

(vi) A beam of length (L+2a) has supports L apart with an overhang a on each side. The beam
carries a concentrated load W at each end. Draw S.F & B.M diagram.

Let DABC be the beam of length (L+2a). Let the supports be at A & B,

so that DA= BC =a

 AB = L

Each vertical reaction = W

 a bR R = W

S.F. at any section between D & A = -W

S.F. at any section between B & C = +W

S.F. at any section between A & B = O

B.M at D = O B.M at A = -Wa

At any section in AB distant x from D the B.M is given by

Mx = -Wx + W(x-a) = -Wa

B.M at B = -Wa B.M at C = O

The B.M throughout the length is of the hogging type.

  

L aa

C
BA

D

W W

aR W BR W

C
BAD

wa wa
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CHAPTER 5

THEORY OF SIMPLE BENDING

When a beam is loaded it is bent and subjected to bending moments. Consequently,

longitudinal or bending stresses are induced in cross section.

Assumptions in ‘Theory of bending’

1. The material of the beam is perfectly homogenous

2. The stress induced is proportional to the strain & the stress should not exceed the elastic

limit.

3. The value of modules of elasticity (E) is same, for the fibres of the beam under compression

or tension.

4. The transverse section of the beam, which is plane before bending, remains plane after

bending.

5. There is no resultant pull or push on the cross section of the beam

6. The loads are applied in the plane of bending.

7. The transverse section of the beam is symmetrical about a line passing through the

centre of gravity in the plane of bending.

8. The radius of curvature of the beam before bending is very large in comparison to the

transverse dimensions.

As a result of a bending moment or couple, a length of beam will take up a curved shape and

a very short length may be treated as a part of the arc of circle. It follows that at the outor radii the

material will be in tension and at the inner radii in compression and at some radius there will be no

stress. This layer of the material is the neutral layer or neutral axis.

Fig 5.1 shows a longitudinal section of a beam, the neutral layer (axis) N.A. being bent to form

an arc of a circle of radius R. The neutral layer is then, before bending, the length pq, which after

bending becomes p/q/.

Consider some layer rs at a distance Y from pq which after bending becomes r/s/. Let p/q/

subtend an angleat the centre of curvature.

     / / / /p q R and r s (R y)

Initially the parallel layers would have equal lengths, so that Pq = rs and since there is no

stress at the neutral layer, then there is no strain.

 / /p q pq

Now the strain in 


  
/ /

/ /rs r s
rs but rs p q p q

rs


 

/ / / /p q r s
Strain

rs

    

   




/ / / /B u t p q R a n d r s (R Y )

R (R Y ) Y
S tra in

R R

N A
r

p q

sy

 

 

Fig. 5.1

r/

p/ q/

s/
 

R

O

y

 


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Now if the stress in rs =  & young’s modulus = E

 
 

Y E
then strain or . . . (5.1)

E R Y R

If a transverse section of the beam is now considered (Fig. 5.2) let a strip of area  a, lie at a

distance Y from the neutral axis.

Then, the normal force on this area ( a)
E

y a
R

  

Now the moment of this force about the neutral axis is 
2E E

y axyor y a
R R

  

This is the resisting moment of the material caused by the stress produced and the total

resisting moment is 
2 2E E

y a or y a
R R

   

And   2y a  B the second moment of area about the neutral axis, I
NA

.

Re sisting moment M
E

xI
R



But since the resisting moment balances the applied bending moment,

M
E M E

xI or
R I R

E M E
But . . .(5.2)

R Y I Y R

 

 
   

Where,

M = moment of resistance

I = Moment of inertia of the section about neutral axis (N.A.)

E = Yong’s modulus of elasticity

R = Radius of Curvature of N.A

  = Bending stress

The above equation is known as the ‘Bending equation’.

Position of Neutral Axis

Consider the cross-section of a beam (Fig. 5.2), there will be no resultant force on the section

for condition of equilibrium.

The force acting on a small area a at a distance ‘y’ from the neutral axis is given by

SF . a
E

Y. a
R

    

y
N A

Fig. 5.2

a
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Or the total force normal to the section,

F
E

Y. a
R

  

For zero resultant force,   Y. a 0

Now  Y. a is the moment of the sectional area about the neutral axis and since this moment
is zero, the axis must pass through the centre of area.

Hence the neutral axis or neutral layer, passes through the centre of area.

Section Modules

Referring to the bending equation, 
 

  

M MY
,

I Y I

M I
or where Z sec tion modulus

Z Y

The section modulus is usually quoted for all standard sections and practically is of greater
use. The strength of the beam section depends mainly on the section modulus.

The section modulii of rectangular and circular sections are calculated below.

(i)  Rectangular section

Fig. 5.3 shows a rectangular section of width b & depth d.

Let the horizontal centroidal axis be neutral axis.





 

  

 

max

max

2

2

Moment of inertia about theneutral axis
Section modulus Z

Distance of the most distant point of the sec tion from the neutral axis.

I

Y

bd3 d
But I and Y

I2 2

bd3
bdI2Z

d 6
2

1
Moment of resistance, M Z x bd ...(5.4)

6

(ii)  Hollow rectangular section

Refer to Fig. 5.4.

Moment of inertia of the section about the neutral axis.

3 3
3 3

max

max

3 3

3 3

3 3

BD bd 1 D
I (BD bd ), Y

12 12 2 2

I
Section modulus Z

Y

(BD bd )
(BD bd )12

D 6D
2

(BD bd )
Moment of resis tance, M Z x

6D

    

  


 

   
 

 
   

 

Fig. 5.3

N A

d

b

D

B

d

b

Fig. 5.4
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(iii)  Circular section

Refer to Fig 5.5

Moment of inertia of the section about the neutral axis.


 

  




 


 

4

max

max

4
3

3

d d
I , Y

64 2

I
Section modulus Z

Y

d
d64 ...(5.6)

d 32
2

d
Moment of resis tance, M Z x

32

(iv)  Hollow circular section

Refer to Fig 5.6

Moment of inertia of the section about the neutral axis.


  

  

    
   

 

 
 

4 4

max

max

4 4 4 4

4 4

D
I (D d ), Y

64 2

I
Section modulus Z

Y

(D d ) 2 (D d )
x ...(5.7)

64 D 32 D

(D d )
Moment of resis tance, M Z x

32 D

Example

A 250mm (depth) x 150mm (width) rectangular beam is subjected to maximum bending

moment of 750 KNm determine.

(i)   The maximum stress in the beam.

(ii)   If the value of E for the beam material is 200 GN/m2.

Find out the radius of curvature for that portion of the beam where the bending is maximum.

(iii)  The value of the longitudinal stress at a distance of 65mm from the top surface of the

beam.

Solution : Refer to Fig 5.7

Width of the beam = b = 150 mm = 0.15m

Depth of the beam = d = 250 mm = 0.25m

Maximum bending moment M = 750KN.m

Young’s modulus of elasticity, E = 200 GN/m2….

N A

d

Fig. 5.5

N A

Fig. 5.6

D

d

N A

Fig. 5.7

250mm

60mm

65mm

150mm
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(i)  Maximum stress in the beam :

  

  




 

 

4 3
4

3

8 2

bd 0.15 x0.25
Momentof inertia I 0.0001953m

12 12

Distanceof theneutralaxis(N.A)fromtop surfaceof thebeam

d 0.25
Y 0.125m

2 2

M
usingtherelation ,

I Y

M.Y 750x10 x0.125
weget

I 0.0001953

4.8 x10 N/mm2 480MN/m

Hence t  2he maximum stress in the beam 480MN/m (Ans)

(ii)  Radius of curvature, R:

Using the relation 
9

3

M EI 200x10 x0.0001953
,R 52.08m (Ans)

I R M 750 x10

E
   

(iii)  Longitudinal stress at a distance of 65mm from top surface of the beam, using the

relation 


  1

1

M

I Y Y


   



3 3
6 21MY 750x10 x(60x10 )

we get 1 x10 MN/m
I 0.0001953

230.4MN/m2 (Ans)
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CHAPTER 6.0

STRUT

A structural member subjected to an axial compressive force is called a strut.

Column

It is a vertical strut used in building or frame.

Axial load on column

The column fails by compressive stress.

The load, the least value of P which will cause the column to buckle, and it is called the Euler

or crippling load.

The column in actual practice is subjected to following end conditions.

(1) Both ends hinged

(2) Both ends fixed

(3) One end is fixed and other end hinged.

(4) One end is fixed and other end free.

6.2 Eccentric load in columns

Eccentric load

A load whose line of action does not coincide with the axis of a column is called eccentric

load.

Direct stresses, bending stresses, maximum & minimum stresses.

 
e

 

P

 
e

 
e

 
P P

b

A B

d

C D

e

Plan

 max
 min
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Consider the above column ABCD subjected to an eccentric load about one axis (Y-Y-axis)

Let P = Load acting on the column

e = Eccentricity of the load

b= Width of the column section

d = Thickness of the column

Now Are of the section = bd

Moment of Inertia, I = 

3d.b

12

Modulus of section,   

3
2d.b

I db12Z
by 12

12

Direct stress, 0

P

A

Moment due to load, M = p.e

Bending stress at any point of column section at a distance y from y-y-axis

 



   





b

b 3 3 2

M M
y

I Z

or

b
aty

2

b
M. 6M 6p.e 6p.e2
db db db A.b

2

Total stress = direct stress + bending stress

   
P M P 6P.e

A Z A Ab

Problem

A rectangular column 200mm wide and 150mm thick is carrying a vertical load of 120KN at

an eccentricity of 50mm in a plane bisecting the thickness determine the maximum and minimum

intensities of stress in the section.

Solution

Given

b = 200mm, d = 150mm, p = 120KN, e = 50 mm

200
A B

150mm

C D

e

Plan

 max
 min

m m50

120KN

Elevation
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Maximum stress

A = b x d = 200 x 150 = 30,000 mm2

 
  

 

 
  

 

 

max

3

2

P 6e
1

A b

120 x10 6 x50
1

30,000 200

10N/ mm 10MPa (Ans)

Minimum Stress

 
  

 

 
  

 



min

3

P 6e
1

A b

120 x10 6x50
1

30,000 200

2MPa (tension)

6.4 Buckling load computation

(1) Columns with both ends hinged




2

2

EI
P

L

(2) Columns with one end fixed and the other free




2

2

EI
P

4L

Cohers

E – Youngs modulus

I = Moment of Inertia about YY-axis.

(3) Columns with both ends fixed.




2

2

EI
P

L

(4) Columns with one end fixed and the other hinged.




2

2

EI
P

L

L

 P

L

B

A

 

B/a

L

B

A

 

M
6

M
6

L

 P

H B

A

M
A
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CHAPATER 7.0

TORSION

7.1 Assumption of pure torsion

If a shaft is acted upon by a pure torque T about its polar axis, shear stress will be set up in

directions perpendicular to the radius on all transverse sections. This is called as the shaft under

torsion.

Following assumptions are made.

1. The material of the shaft is uniform through out

2. The twist along the shaft is uniform.

3. Normal cross sections of the shaft, which were plane and circular before the twist,

remains plane and circular even after the twist.

4. All diameters of the normal cross section which were straight before the twist, remain

straights with their magnitude unchanged, after the twist.

7.2 The torsion equation for solid shaft.

These above assumption is justified by the symmetry of the section.

The left hand figure shows the shear strainof elements at a distance r from the axis ( is

constant far constant T), so that a line originally OA twists to OB, and  ACB  the relative angle of

twist of cross sections a distance L apart.

Arc AB r L (approx)

But , whereG modulus of rigidity
G

r.
or

L

r .

e G

G.
or

r L

  


 




 


 


The torque can be equated to the sum of the moments of the tangential stresses on the

element 2 rdr;

L

A

B
O

r

B

d

 

 AC
D

r

dr 


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  







 
 




  



 

  
 



4

max 3

4 4

max 4 4

i.e. T (2 rdr)r

G
or,T .J

L

WhereJpolarmomentof inertial

T G

J L

T G
combing

J r L

D
forasolidshaft J

32

andthemax stress

16T D
at r

D 2

foraholloro shaft

J (D d )
32

16.D.T D
and at r

(D d ) 2

Torsional stiffne  


T GJ
ss,K

L

7.3 Comparison between solid and hollow shaft subjected to pure torsion.

Example

Compare the weights of equal lengths of hollow and solid shaft to transmit a given torque for

the same maximum shear stress if the inside diameter is
2

3
of the outside.

Solution

3

4 4
1

43
1

3

3 3

1

1

T 2J D
Nro, for solidshaft

D 16

(D d )T
and for hollow shaft

16D

DT 2
or 1

16 3

65 x D1

81x16

Equatingthese twoshaft

D 65 x D1

16 81x16

D D.3 81/ 65 1.075D

D 1.075D


 



 




   
       




 


 


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Ratio of weights of equal lengths

 

 
  

 

 
 
 



2 2 2

1

2

1

2

(D d ) /D

4
(D / d) 1

9

5
2x1.075

9

0.642

Problem

A circular shaft of 50mm diameter is required to transmit torque from one shaft to another

find the safe torque, which the shaft can transmit. If the 40MPa

Solution

  


 




 

 

max

3

3

6

D 50mm, 40MPa

weknow

T x D
16

x 40 x50
16

0.982 x10 N mm

0.982KN m
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