OSME Keonjhar ## Department of Mechanical Engineering ## Lesson Plan | Discipline: Mechanical | Semester: 6th | Faculty: MISS GEETANJALI MARDI | |-------------------------|--|---| | Engineering | | | | Subject: Advance | No. Of Days/Week
Allotted: 4 | Semester from: 10.03.2022 To: 30.06.2022 | | | Allotted. 4 | No. Of Weeks: 15 | | Manufacturing | | | | processes | | | | Week | Class Day | Theory Topics | | 1 st | 1 st | Module 1.Non conventional machining process: What is Non-
conventional machining process? Difference between
Conventional and non-conventional machining. Types of non-
conventional machining | | a . | 2 nd | Ultrasonic Machining: principle, Description of equipment, applications | | | 3 rd | Electric Discharge Machining: Principle, Description of equipment, Dielectric fluid, tools (electrodes), Process parameters, Output characteristics, applications. | | | 4 th | Abrasive Jet Machining: principle, description of equipment,
Material removal rate, application. | | 2 nd | 1 st | Laser Beam Machining: principle, description of equipment,
Material removal rate, application. | | | 2 nd | Electro Chemical Machining: principle, description of equipment, Material removal rate, application. | | | 3 rd | Electro Chemical Machining: principle, description of equipment, Material removal rate, application. | | | 4 th | Plasma Arc Machining – principle, description of equipment,
Material removal rate, Process parameters, performance
characterization, Applications | | 3 rd | 1 st | Plasma Arc Machining – principle, description of equipment,
Material removal rate, Process parameters, performance
characterization, Applications | | | 2 nd | Electron Beam Machining - principle, description of equipment,
Material removal rate, Process parameters, performance
characterization, Applications | | | 3 rd | Electron Beam Machining - principle, description of equipment,
Material removal rate, Process parameters, performance
characterization, Applications | | | 4 th | Topic end, Question answer discussion, Assignment 1 | | 4 th | 1 st | Module2.Plastic Processing Introduction, thermoset and thermoplast plastic. | | | 2 nd | Processing of plastics. | |---|------------------|--| | | 3 rd | Moulding processes: Injection moulding, | | *************************************** | 4 th | Compression moulding, Transfer moulding | | 5 th | 1 st | Extruding; Casting; Calendering. | | | 2 nd | Fabrication methods-Sheet forming, Blow moulding, Laminating plastics (sheets, rods & tubes), Reinforcing. | | | 3 rd | Applications of Plastics. | | | 4 th | Topic end, Question answer discussion, Assignment 11 | | 6 th | 1 st | Module 3 Additive Manufacturing Process Introduction | | | 2 nd | Need for Additive Manufacturing | | | 3 rd | Fundamentals of Additive Manufacturing, | | | 4 th | AM Process Chain | | 7 th | 1st | Advantages and Limitations of AM, | | | 2 nd | Commonly used Terms, Classification of AM process, | | | 3 rd | Fundamental Automated Processes | | | 4 th | Distinction between AM and CNC, | | 8 th | 1 st | Other related technologies. | | | 2 nd | Application –Application in Design, Aerospace Industry,
Automotive Industry | | | 3 rd | Application- Jewellery Industry, Arts and Architecture. RP
Medical and Bioengineering Applications | | | .4 th | Web Based Rapid Prototyping Systems. | | 9 th | 1 st | Concept of Flexible manufacturing process | | | 2 nd | Concurrent engineering | | | 3 rd | production tools like capstan and turret lathes, | | é | 4 th | Rapid prototyping processes | | 10 th | 1 st | Topic end, Question answer discussion, Assignment III | | | 2 nd | Module4.Special Purpose Machines (SPM): Introduction | | | 3 rd | Concept, General elements of SPM | | | 4 th | Productivity improvement by SPM, | | 11 th | 1 st | Productivity improvement by SPM, | | | 2 nd | Productivity improvement by SPM, | | | 3 rd | Principles of SPM design. | | | 4 th | Principles of SPM design. | | 12 th | 1 st | Revision for | | | 2 nd | Module5.Maintenance of Machine Tools: | | | 3 rd | Types of maintenance | | | 4 th | Types of maintenance | | 13 th | 1 st | Repair cycle analysis | | | 2 nd | Repair cycle analysis | | | 3 rd | Repair complexity | | | I | | | | 4 th | Maintenance manual, | |------|-----------------|---| | 14th | 1st | Maintenance records | | | 2 nd | Housekeeping | | | 3rd | Introduction to Total Productive Maintenance (TPM). | | | 4th | Total Productive Maintenance (TPM). | | 15th | 1 st | Revision | | | 2nd | Revision | | | 3rd | Revision | | | 4 th | Revision |