

Orissa School of Mining Engineering Keonjhar

Department of Mechanical Engineering

<u>Lesson Plan w.e.f 10.03.2022 – 30.06.2022</u>

Subject: Fluid Mechanics					
Discipline: Mechanical Engineering		Name of the Faculty: Bibhabaree Samal			
Course Code:	TH.3	Semester:	4th		
Total Periods:	60	Examination:	2022(Summer)		
Theory Periods:	4P/W	Class Test:	20		
Maximum Marks:	100	End Semester Examination:	80		

Week	Class Day	Theory Topics	
1 st	1 st	Chapter 1: Properties of Fluid: Define fluid, Description of fluid properties like Density, Specific weight, specific gravity, specific volume	
	2 nd	Simple Numerical problems	
	3 rd	Types of fluid, Newton's law of viscosity	
	4 th	Definitions and Units of Dynamic viscosity, kinematic viscosity	
2 nd	1 st	Numerical Problems	
	2 nd	Surface tension Capillary phenomenon	
	3 rd	Numerical Problems	
	4 th	Assignment 1	
3 rd 1 st		Chapter 2: Fluid Pressure and its measurements Definitions and units of fluid pressure, pressure intensity and pressure head.	
	2 nd	Statement of Pascal's Law	
	3 rd	Concept of atmospheric pressure, gauge pressure, vacuum pressure and absolute pressure	
	4 th	Pressure measuring instruments Manometers (Simple and Differential)	
4 th	1 st	Bourdon tube pressure gauge(Simple Numerical)	
	2 nd	Solve simple problems on Manometer	
	3 rd	Solve simple problems on Manometer	
	4 th	Assignment 2	
5 th	1 st	Chapter 3: Hydrostatics , Definition of hydrostatic pressure	
	2 nd	Total pressure and centre of pressure on immersed bodies(Horizontal)	
	3 rd	Total pressure and centre of pressure on immersed bodies(Vertical)	
	4 th	Solve Simple problems	
6 th	1 st	Archimedes 'principle, concept of buoyancy, meta center and meta centric height (Definition only)	
	2 nd	Concept of floatation	

	3 rd	Solve simple problems		
	4 th	Assignment 3		
7 th	1 st	Chapter 4: Kinematics of Flow, Types of fluid flow		
	2 nd	Continuity equation(Statement and proof for one dimensional flow)		
	3 rd	Numerical problems		
	4 th	Bernoulli's theorem(Statement and proof)		
8 th	1 st	Applications and limitations of Bernoulli's theorem (Venturimeter)		
	2 nd	Applications and limitations of Bernoulli's theorem (pitot tube)		
	3 rd	Numerical problems		
	4 th	Assignment 4		
9 th	1 st	Chapter 5: Orifices, notches & weirs, Define orifice, Flow through orifice		
	2 nd	Orifices coefficient & the relation between the orifice coefficients		
	3 rd	Numerical problems		
	4 th	Classifications of notches & weirs		
10 th	1 st	Discharge over a rectangular notch or weir		
	2 nd	Discharge over a triangular notch or weir		
	3 rd	Numerical problems		
	4 th	Assignment 5		
11 th	1 st	Chapter 6: Flow through pipe , Definition of pipe. Loss of energy in pipes.		
	2 nd	Head loss due to friction: Darcy's formula		
	3 rd	Head loss due to friction: Chezy's formula		
	4 th	Numerical Problems using Darcy's and Chezy's formula		
12 th	1 st	Numerical Problems using Darcy's and Chezy's formula		
	2 nd	Numerical Problems using Darcy's and Chezy's formula		
	3 rd	Numerical Problems using Darcy's and Chezy's formula		
	4 th	Numerical Problems using Darcy's and Chezy's formula		
13 th	1 st	Numerical Problems using Darcy's and Chezy's formula		
	2 nd	Assignment 6		
	3 rd	Chapter 7: Impact of jets, Impact of jet on fixed vertical flat plates		
	4 th	Impact of jet on moving vertical flat plates		
14 th	1 st	Derivation of work done on series of vanes and condition for maximum efficiency		
	2 nd	Impact of jet on moving curved vanes, illustration using velocity triangles		
	3 rd	Derivation of work done, efficiency		
	4 th	Numerical problems		
15 th	1 st	Numerical problems		
	2 nd	Numerical problems		
	3 rd	Numerical problems		
	4 th	Assignment 7		