| Discipline:
Mining
Engineering | Semester:
6 TH semester | Semester from Date:10.03.2022 to 10.06.2022 | | | |---|--|--|---|----------------------------| | Subject:
Mining
Geology-II
Sub code: | No of days
/week class
allotted:04 | | | | | Th.2 | | | Practical topics | Remarks | | Week | Class Day | Theory topics | Megascopic identification of | Sanapika | | 1 st | 1 st | Stratigraphy Stratigraphy and types of stratigraphy. | Igneous rocks in hand specimens. Megascopic identification of | * Dorsh | | | 2 nd | Principles of Stratigraphy. Principle of Uniformitarianism Principle of Original horizontality Principle of Superposition Principle of Original Lateral | Igneous rocks in hand
specimens. | Sancapika
Dash | | 3 | 3 rd | Continuity Principles of Stratigraphy. Principle of Cross-Cutting Relationships Principle of Inclusion | Megascopic identification of Igneous rocks in hand specimens. | Sanapika | | | 4 th | Principle of Faunal Succession Geological time scale. Pre-Cambrian | Megascopic identification of Igneous rocks in hand specimens. Megascopic identification of | Sanaji ka
Sanaji ka | | 2 nd | 1 st | Geological time scale. Paleozoic Mesozoic | Igneous rocks in hand specimens. | Sanap ka
Qash | | | 2 nd | Cenozoic Stratigraphy sequence, lithology of Iron Ore Series | Megascopic identification of Igneous rocks in hand specimens. | South 8 | | | 3 rd | Distribution and economic minerals deposit of Iron Ore Series | Megascopic identification of Igneous rocks in hand specimens. | South | | | 4 th | Stratigraphy sequence, lithology of gondwana supergroup | Megascopic identification of Igneous rocks in hand specimens. | South | | 3 rd | 1 st | Two fold classification of gondwana supergroup. | Megascopic identification of Igneous rocks in hand specimens. | Sorida | | | 2 nd | Three fold classification of gondwana supergroup | Megascopic identification of
Igneous rocks in hand
specimens. | Sarita
Sarita
Carita | | | 3 rd | Distribution and economic minerals deposit of Gondwana Supergroup and different lower gondwana coal fields | Megascopic identification of Igneous rocks in hand specimens. | Saly | Bast 10.3.202 | | 4 th | in India. | Megascopic identification of | Catio | |-----------------|-----------------|--|---|--------------------------| | | 4 | Stratigraphy sequence, lithology of Cuddapah Supergroup | Igneous rocks in hand specimens. Megascopic identification of | 1 2% | | | 1 st | Distribution and economic minerals deposit of Cuddapah Supergroup | Igneous rocks in hand specimens. Megascopic identification of | Saro | | | 2 nd | Stratigraphy sequence, lithology of Vindhyan Supergroup. | specimens. | Gail | | | 3 rd | Distribution and economic minerals deposit of Vindhyan Supergroup. | Megascopic identification of Igneous rocks in hand specimens. Megascopic identification of | Sarapika | | | 4 th | Economic Geology Definition of ore, ore minerals with examples. | Igneous rocks in natiu specimens. | · | | th . | 1 st | Gangue, tenors & grade with examples. | specimens | Sanapika | | | 2 nd | Important ore minerals of IRON ore. | Megascopic identification of
Sedimentary rocks in hand
specimens | Samapika | | | 3 rd | Mode of occurance of Iron deposits in India. | Megascopic identification of
Sedimentary rocks in hand
specimens | Sanajika | | | 4 th | Distribution and uses of Iron deposits in India. | Megascopic identification of
Sedimentary rocks in hand
specimens | Sanapika | | 6 th | 1 st | Description of mineralogy of Copper deposits. | Megascopic identification of
Sedimentary rocks in hand
specimens | Desh
Sanapika
Dash | | | 2 nd | Mode of occurance and origin of copper ore. | Megascopic identification of Metamorphic rocks in hand specimens | Sanapika | | | 3 rd | Distribution and uses of Copper ore deposit. | Megascopic identification of
Sedimentary rocks in hand
specimens | Sauapika | | | 4 th | Description of mineralogy of Lead & Zinc deposits. | Megascopic identification of
Sedimentary rocks in hand
specimens | Samajik | | | 1 st | Origin and mode of occurance of Lea | d Megascopic identification of | Sarrapta | Days 2012 | | | and Zinc deposits. | Metamorphic rocks in hand specimens | Savapoan | |-------------------|-----------------|---|---|--------------------------------------| | | 2 nd | Distribution and uses of Lead & Zinc deposits. | | Sanapika
Sanapika
Sanapika | | | 3 rd | Mineralogy , origin and mode of occurance of Chromite deposits | Metamorphic rocks | Sauapika | | | 4 th | Distribution and uses of Chromite deposits in India. | Megascopic identification of Metamorphic rocks in hand specimens | Sarapika | | th | 1st | UNFC code of classification of reserves | Megascopic identification of Metamorphic rocks in hand specimens | Sanapika
Dash
Sanapika
Dash | | | 2 nd | UNFC code of classification of reserves | Megascopic identification of Metamorphic rocks in hand specimens | Sanapika | | The second second | 3 rd | Fossil fuels Coal & the different ranks of coal. 1) Peat 2) Lignite 3) Sub bituminous 4) Bituminous | Megascopic identification of Metamorphic rocks in hand specimens | Saryo | | 79 | 4 th | 5)Anthracite Different grades of coal viz.A,B,C,D | Megascopic identification of Metamorphic rocks in hand specimens | Said | | 9 th | 1 st | Chemical properties of coal. 1)moisture content 2)volatile matter 3)fixed carbon | Interpretation of contour maps and preparation of the profile section for it. | Solige | | | 2 nd | 4)fuel ratio Chemical properties of coal 5)ash content 6)sulfur content 7)calorific value | Interpretation of contour maps and preparation of the profile section for it. | Sariya | | | 3 rd | In-situ theories accounting for the origin of coal | Interpretation of contour maps and preparation of the profile section for it. | Sorya | | | 4 th | Drift theories accounting for the origin of coal | profile section for it. | Sorie Sarie | | 10 th | 1 st | Description of different lower gondwana coal fields of India. | Interpretation of contour maps and preparation of the profile section for it. | Cory | | | 2 nd | Petroleum and its composition. | Interpretation of contour maps and preparation of the profile section for it. | Sove | Bent 10.3.2022 | 3 rd | Organic theories accounting for the origin of petroleum. | Interpretation of contour maps and preparation of the profile section for it. | | |---------------------------------|---|--|-----------| | 4 th | Inorganic theories accounting for the origin of petroleum | Interpretation of contour maps and preparation of the profile section for it. | | | 1 st | Migration of petroleum. | Interpretation of contour maps and preparation of the profile section for it. | 300 | | 2 nd | Oil traps, its formation and types of oil traps. | profile section for it. | 0 | | 3 rd | Oil pool and its formation. | Interpretation of contour maps and preparation of the profile section for it. Interpretation of contour | 149 | | 4 th | Process of accumulation of oil. | profile section for it. | <u>^0</u> | | 1 th 1 st | Description of different important oil fields of India. | profile section for it. | 3 | | 2 nd | Prospecting and exploration Definition of Prospecting and exploration & difference between | Interpretation of geological maps and preparation of the profile section for it. | irya | | 3 rd | exploration and prospecting. Use of Multishot camera for Boreho direction test. | profile section for it. | 18 | | 4 th | Geological exploration | Interpretation of geological maps and preparation of the profile section for it. | is | | 12 th 1 | Description of various criteria for geological exploration | Interpretation of geological maps and preparation of the profile section for it. | ir | | | Geophysical prospecting and Diff
methods of geophysical prospect | erent Interpretation of geological maps and preparation of the profile section for it. | avy | | | Different methods of geophysical prospecting. | Interpretation of geological maps and preparation of the profile section for it. | aus | | | Geo chemical prospecting and methods | | parigo | Bout 10.2, 2012 | 1 | 1 st | Bio-geochemical & Geo botanical Prospecting. | Describe the specific gravity of small specimen by Joley's spring balance. | Saiya
Saiya
Saiya | |----|---------------------------------|---|--|-------------------------| | | 2 nd | Sampling and assaying | Describe the specific gravity of small specimen by Joley's spring balance. | Gariy | | | 3 rd | Methods of preparation of sample assay | Describe the specific gravity of small specimen by Joley's spring balance. | Savy | | | 4 th | • Grab Sampling • Chip Sampling | Sp | | | 1 | 1 st | Channel Sampling TYPES OF SAMPLING Bulk Sampling Dump Sampling | Describe the specific gravity of small specimen by Joley's spring balance. | Soir | | | 2 nd | Trench Sampling Different methods of sampling outlined by BIS | Field visit(Gr-1) | Sain | | | 3 rd | Different methods of sampling outlined by BIS | Field visit(Gr-2) | Dark | | | 4 th | DOUBT CLEARING CLASS | TEST | Dash | | th | 1 st | DOUBT CLEARING CLASS MOCK TEST | TEST | Berk | | | 3 rd 4 th | MOCK TEST MOCK TEST | TEST | Born | Sast 10.2.2021 Samapika Dash Senior Lecturer Mathematics & Sc.(Geology) OSME,Keonjhar