Discipline:		Semester:	Name of the Teaching Faculty Tushar Daspattanayak
Metallurgical		4 th	
Engineering		semester	
Subject sponge iron		No of days	Semester from Date:10-03-2022 to 30-06-2022
andferro alloys		/week class	
		allotted:0	
		4	
Month	week	Class Day	Theory topics
	3 rd	1st	Explain historical developments of sponge iron
March		nd.	
		2 nd	Explain reason for rapid growth of DR processes
		3 rd	Explain chronological evolution of DRI process
	4 th	1 st	Explain conventional vs DRI steelmaking & Explain direct reduction of
		2 nd	iron ore Explain principle of direct reductionprocess
		2114	Explain principle of direct reduction process
		3 rd	Explain reaction between coal,oxygen and carbon dioxide
		4 th	Explain reaction between iron oreand Co
	5 th	1st	Explain reaction mechanism in coalbased DRI process
	5 11		Explain reaction mechanism in coaloased DRI process
		2 nd	Explain reaction mechanism in gasbased DRI process
		3rd	Explain reaction mechanism in gasbased DRI process
		Jiu	Explain reaction mechanism in gasbased DRI process
April	2 nd	1 st	Explain reduction by carbon monoxide & Explain reduction by hydrogen ,bouldourd reaction
1		2 nd	Explain reduction by carbon and carbon deposition
		3rd	Explain kinetics in DRI
		4 th	Explain factor influencing reducibility of iron ore
		5 th	Explain rate controlling theories
	3 rd	1 st	Explain coal based DRI process SL/RN,CODIR,ACCAR
			process

		2 nd	Explain TDR,OSIL,Krupp Reinprocess
		3 rd	Explain coal based processINMETCO,FASTMET,ITMK3, EXPLAIN tunnel kiln process, kinglor-meter,hogans
	4 th	1 st	Explain gas based process HYLprocess, MIDREX,Fluidised bed process
		2 nd	Explain HIB,Uses of DRI in ironmaking and steel making
		3 rd	Explain raw material of sponge iron
	5 th	1 st	Explain chemical and physical test on ironore
		2 nd	Explain test on coking coal, proximity andultimate analysis
		3 rd	Explain of iron ore size on reduction
	1st	1 st	Explain carbon enrichment of sponge iron
	2 nd	1 st	Explain flow of solids in the reactor or kiln
		2 nd	Explain how carbon enrichment of spongeiron is performed
		3 rd	Explain parameters of sponge iron production
May		4 th	Explain non magnetic percentage in the kilndischarge
l iviay	3 rd	2 nd	Explain daily operating parameters
		3 rd	Explain abnormalities
		4 th	Explain major problems in DRI kilnoperation, Explain shut down procedure
	4 th	1 st	Explain the start up process
		2 nd	Explain accretion formation
		3rd	Explain key notes on the process plantoperations
		4 th	Explain sampling
June	1 st	1 st	Explain Chemical analysis of ironore and lime stone, coal
		2 nd	Explain quality control of input raw

		I		
			Material, Explain determination of total	
			iron, ferrousiron	
	2nd	1 st	Explain air pollution mitigation	
			measures Explain fugitive dust	
			generation Explain water pollution	
			mitigationmeasures	
		2 nd	Explain solidwaste generation and	
			disposal	
		3rd	Explain hazardous wastes and chemicals	
		4 th	Explain occupational health and safety	
	3rd	1 st	Explain environmental monitoring	
			and environmental standards	
		2 nd	Explain introduction of ferro alloys	
		1 st	Explain different types of ferro	
			alloys	
	41-	2 nd	Explain general method of producing	
	4 th		ferroalloy	
		3rd	Explain refining of ferro alloys	
		4 th	Explain production of individual ferro	
			alloys	