| Discipline: | | Semester: | Name of the Teaching Faculty Tushar Daspattanayak | |---------------------|-----------------|-----------------|--| | Metallurgical | | 4 th | | | Engineering | | semester | | | Subject sponge iron | | No of days | Semester from Date:10-03-2022 to 30-06-2022 | | andferro alloys | | /week
class | | | | | allotted:0 | | | | | 4 | | | Month | week | Class Day | Theory topics | | | 3 rd | 1st | Explain historical developments of sponge iron | | March | | nd. | | | | | 2 nd | Explain reason for rapid growth of DR processes | | | | 3 rd | Explain chronological evolution of DRI process | | | | | | | | 4 th | 1 st | Explain conventional vs DRI steelmaking & Explain direct reduction of | | | | 2 nd | iron ore Explain principle of direct reductionprocess | | | | 2114 | Explain principle of direct reduction process | | | | 3 rd | Explain reaction between coal,oxygen and carbon dioxide | | | | | | | | | 4 th | Explain reaction between iron oreand Co | | | 5 th | 1st | Explain reaction mechanism in coalbased DRI process | | | 5 11 | | Explain reaction mechanism in coaloased DRI process | | | | 2 nd | Explain reaction mechanism in gasbased DRI process | | | | 3rd | Explain reaction mechanism in gasbased DRI process | | | | Jiu | Explain reaction mechanism in gasbased DRI process | | April | 2 nd | 1 st | Explain reduction by carbon monoxide & Explain reduction by hydrogen ,bouldourd reaction | | 1 | | 2 nd | Explain reduction by carbon and carbon deposition | | | | 3rd | Explain kinetics in DRI | | | | 4 th | Explain factor influencing reducibility of iron ore | | | | 5 th | Explain rate controlling theories | | | 3 rd | 1 st | Explain coal based DRI process SL/RN,CODIR,ACCAR | | | | | process | | | | 2 nd | Explain TDR,OSIL,Krupp Reinprocess | |---------|-----------------|-----------------|--| | | | | | | | | 3 rd | Explain coal based processINMETCO,FASTMET,ITMK3, EXPLAIN tunnel kiln process, kinglor-meter,hogans | | | 4 th | 1 st | Explain gas based process HYLprocess, MIDREX,Fluidised bed process | | | | 2 nd | Explain HIB,Uses of DRI in ironmaking and steel making | | | | 3 rd | Explain raw material of sponge iron | | | 5 th | 1 st | Explain chemical and physical test on ironore | | | | 2 nd | Explain test on coking coal, proximity andultimate analysis | | | | 3 rd | Explain of iron ore size on reduction | | | 1st | 1 st | Explain carbon enrichment of sponge iron | | | 2 nd | 1 st | Explain flow of solids in the reactor or kiln | | | | 2 nd | Explain how carbon enrichment of spongeiron is performed | | | | 3 rd | Explain parameters of sponge iron production | | May | | 4 th | Explain non magnetic percentage in the kilndischarge | | l iviay | 3 rd | 2 nd | Explain daily operating parameters | | | | 3 rd | Explain abnormalities | | | | 4 th | Explain major problems in DRI kilnoperation, Explain shut down procedure | | | 4 th | 1 st | Explain the start up process | | | | 2 nd | Explain accretion formation | | | | 3rd | Explain key notes on the process plantoperations | | | | 4 th | Explain sampling | | June | 1 st | 1 st | Explain Chemical analysis of ironore and lime stone, coal | | | | 2 nd | Explain quality control of input raw | | | | I | | | |--|-----------------|-----------------|--|--| | | | | Material, Explain determination of total | | | | | | iron, ferrousiron | | | | 2nd | 1 st | Explain air pollution mitigation | | | | | | measures Explain fugitive dust | | | | | | generation Explain water pollution | | | | | | mitigationmeasures | | | | | 2 nd | Explain solidwaste generation and | | | | | | disposal | | | | | 3rd | Explain hazardous wastes and chemicals | | | | | 4 th | Explain occupational health and safety | | | | 3rd | 1 st | Explain environmental monitoring | | | | | | and environmental standards | | | | | 2 nd | Explain introduction of ferro alloys | | | | | 1 st | Explain different types of ferro | | | | | | alloys | | | | 41- | 2 nd | Explain general method of producing | | | | 4 th | | ferroalloy | | | | | 3rd | Explain refining of ferro alloys | | | | | | | | | | | 4 th | Explain production of individual ferro | | | | | | alloys |