NON-FERROUS METALLURGY (MCQ QUESTIONS)

Er. BHAGYASHREE BAL Lect. In Metallurgy DIPLOMA

Department of Metallurgical Engineering

ORISSA SCHOOL OF MINING ENGINEERING, KEONJHAR

A Government of Odisha institution with National Repute Established in the Year 1956(Approved by AICTE, New Delhi & Affiliated to SCTE&VT, Odisha, BBSR)

Non-Ferrous Metallurgy 5th Semester

- 1. Which of the following operations use physical means to yield a product enriched in the metal bearing mineral?
 - (a) Hydrometallurgy.
 - (b) Pyrometallurgy.
 - (c) Electrometallurgy.
 - (d) Mineral dressing.
- 2. In which of the following processes, the chemical combination between the metal sought and other elements is not broken up?
 - (a) Mineral dressing
 - (b) Hydrometallurgy
 - (c) Pyrometallurgy
 - (d) Electrometallurgy.
- 3. Which one occupies the lowermost position in the electromotive series of metals?
 - (a) Aluminium.
 - (b) Alkali metals (e.g., K, Na, Li),
 - (c) Noble metals (Ag, Pt, Au).
 - (d) Zinc.
- 4. The metals occurring at the lowermost position in electromotive series
 - (a) do not resist corrosion.
 - (b) resist corrosion very strongly.

- (c) are very brittle.
- (d) are heat insulators.
- 5. Oxides of which of the following metals in electromotive series are not reducible by carbon in fuel fired furnaces?
 - (a) Ag & Hg
- (b) Cu&Sn
- (c) Pb & Fe
- (d) Zn & Cr
- 6. Oxides of which of the following metals decompose by heat alone?
 - (a) Ag & Hg
- (b) Cu&Sn
- (c) Pb & Fe
- (d) Zn & Cr
- 7. Which of the following does not offer an effective protective coating against corrosion of iron (as being evident from electromotive series of metals)?
 - (a) Zinc
- (b) Chromium
- (c) Tin
- (d) Nickel
- 8. Electromotive series of metals helps in
 - (a) deciding the mode of its extraction from ore.
 - (b) classifying the metals into different groups based on their reactivity towards oxygen, water etc.
 - (c) both (a) & (b).
 - (d) neither (a) nor (b).

Answers

- 1. (d)
- 2. (a)
- 3. (c)
- 4. (b)
- 5. (a)
- 6. (a)

- 7. (d)
- 8. (c)

ture in the (a) Au & (c) Cu &N 10. Extraction the most of (a) Fe (c) Zn 11. Which of curs in the (a) Sn (c) Pb 12. Which of curs in the (a) Fe (c) Al 13. Iron, tin & the form of (a) pyrites (c) chlorid 14. Copper, le form of (a) oxides (c) sillicate 15. Which is (a) Chalco (c) Flours 16. Which is (a) Cassin	eir free metallic s Ag (b) Pl Ni (d) no n of which of the for expensive? (b) A (d) Pl the following me the following me the form of oxides? (b) Cu (d) Zr the following me the form of sulphid (b) Sr (d) Pl & aluminium ores of s (b) su the following me the form of sulphid (b) Sr (d) Pl & aluminium ores of s (b) su the following me the form of sulphid (b) Sr (d) Pl St and	o &Zn one of these collowing metals is u o tals generally oc- u tals generally oc- es? u o s mostly occur in lphides sides costly occur in the rbonates lphides nineral? clicite cuartz us mineral? Chalcopyrite	(a) ZnS (c) CaF (c) CaF 19. Chemic (a) CaF (c) Cu ₂ 20. Chemic (a) ZnS (c) CaF 21. Chemic (a) CaF (c) Cu ₂ 22. Percent of (a) iror (c) zinc 23. Percent imum i (a) cop (c) gold 24. Functio (a) che (b) mal (c) proc tem gan (d) all (25. With in ore	cal formula of S_2 S. Fe ₂ S ₃ cal formula of S_2 cal formula of S_2 cal formula of S_2 S. Fe ₂ S ₃ tage of gangulation case of the per language and S_2 can of flux in emically combined the ganguage and S_2 can of flux in emically combined	(b) CaCO ₃ (d) ZnS of sphalerite is (b) SnO ₂ (d) ZnS of flourspar is (b) SiO ₂ (d) ZnS the is maximum in the second of th	min- gy is to ue. t a ch the fuse.
(c) Sphale	rite (d) Fl	ourspar opyrite is	(a) flux (b) sme	requirement elting time		
(a) Cu ₂ S. (c) SnO ₂	$\operatorname{Fe_2S_3}$ (b) Co (d) Co	1 ₂ S.FeS aF ₂	` ′	Siting furnace (a) , $(b) \& (c)$	•	
		Aı	nswers			
9. (d)	10. (b)	11. (a)	12. (d)	13. (d)	14. (d)	
15. (a)	16. (d)	17. (a)	18. (b)	19. (b)	20. (a)	
21. (a)	22. (b)	23. (c)	24. (d)	25. (d)	(-9	
V.7	(-/	\·/	\-·/	()		

methods mainly to (a) reduce (b) get hi (c) get hi (d) get m 27. Fe contons (a) 20-25 (c) 60-65 28. Iron oxida about (a) 20-25 (c) 60-65 29. Which metal extractions (a) Hydro (b) Pyron (c) Electrock (d) All (d) 30. The medical earth medical hydro (b) pyron (c) electrock (d) all (a) 11. Gold ore normally metal extractions (a) hydro (b) pyron (c) electrock (d) all (a) 11. Gold ore normally metal extractions (a) hydro (b) pyron (c) electrock (d) all (a) 11. Gold ore normally metal extractions (a) hydro (b) pyron (b) pyron (c) electrock (d) all (a) 11. Gold ore normally metal extractions (b) pyron (c) electrock (d) pyron (d) pyron (d) pyron (d) pyron (e) electrock (d) pyron (d) pyr	of gangue remove the cost of metals gh quality metals. In the cost of metals gh quality metals gh quality metals gh quality metals gh quality metals. In the cost of the cost of metals with good we get in the cost of the co	vorkability. ron ore is about 0-45 0-95 Indian iron ore is 0-45 0-95 traction is applied	traction (a) Hy (b) Pyn (c) Ele (d) All 33. Pyromition is (a) dry (c) elec (d) non 34. Leachimethon (a) pyn (b) hyo (c) elec (d) non 35. Roastimethon (a) hyo (b) pyn (c) elec (d) non 36. Electron (a) Ala (c) Zn 37. Fluxes (a) oxi (c) methon (a) flux (b) gar	rometallurgical. rometallurgical. retrometallurgical. retrometallurgical. retrometallurgical meth a/an	od of metal extraction. wet none of these ne in the	ı
(a) hydrometallurgical(b) pyrometallurgical(c) electrometallurgical(d) none of these			(b) gangue (c) both (a) & (b) (d) neither (a) nor (b)			
						٠,
26. (c) 32. (a)	27. (c) 33. (a)	28. (d) 34. (b)	29. (c) 35. (b)	30. (a) 36. (a)	31. (a) 37. (a)	
38. (c)						1

Ans	wers
44. Matte is(a) an intermediate product during metal extraction from sulphide rich ores.(b) produced when the gangue percentage in sulphide ore is very high.	 (a) an acid flux is required. (b) a basic flux is required. (c) either acid or basic flux will do. (d) its removal is very easy.
 (a) volatile metals. (b) zinc, cadmium & mercury. (b) both (a) &(b). (d) neither (a) nor (b). 	 (c) both (a) & (b) (d) neither (a) nor (b). 49. If the gangue in the ore to be fluxed is basic, then
43. Distillation is adopted in the treatment of <i>(a)</i> volatile metals.	(a) nature (b) amount
 (a) flash roasting (b) sulphatizing (c) blast roasting (d) autogenous roasting 	48. The chemical composition of slag formed during metal extraction does not depend upon theof flux.
42. Ore roasting in which the heat generated by the oxidation of sulphides is sufficient to propagate the reaction is called the	 (a) resulting from refining of scraps. (b) resulting from reduction of their ores. (c) which are having high level of impurities. (d) which can be cold rolled.
(b) Chloridizing(c) Suspension roasting(d) Sulphatizing	(d) all (a), (b) & (c). 47. Secondary metals are those
41. Which is the most common form of ore roasting? (a) Oxidising roasting	metals arsenides. (b) brittle. (c) formed when arsenical ores are smelted.
(c) both (a) & (b). (d) neither (a) nor (b).	46. Speiss is (a) hetergeneous mixture of two or more
nature. (b) change the ore chemically by devolatalisation.	nickel. (c) blue or grey and lustre is bright. (d) all (a), (b) & (c).
40. Roasting of an ore is done to (a) fuse it without changing its chemical	(a) brittle.(b) produced during extraction of copper &
(c) > 800 $(d) > 1100$	45. Matte is
39. Decomposition of carbonates during calcination of dolomite, limestone & magnesite takes place at	(c) a heterogeneous mixture of metallic sulphides in which the metallic contents are concentrated. (d) all (a), (b) & (c).
39. Decomposition of carbonates during calcina-	(c) a heterogeneous mixture of metallic sul-

39. (c)

45. (d)

40. (b)

46. (d)

41. (a)

47. (a)

42. **(d)**

48. (d)

43. (c)

49. (a)

44. (d)

- 50. The gangue material in ore consists of
 - (a) acid components only.
 - (b) basic components only.
 - (c) both acid & basic components but the acid components generally predominate.
 - (d) both acid & basic components but the basic components generally predominates.
- 51. Self fluxing ores are those
 - (a) which do not need external flux.
 - (b) in which acid & basic components are balanced.
 - (c) both (a) & (b).
 - (d) neither (a) nor (b).
- 52. Which is not an acid flux?
 - (a) Sand
- (b) Gravel
- (c) Quartz rock
- (d) None of these
- 53. Depending upon the condition of the slag, which of the following is capable of acting both as an acid or a base?
 - (a) Lime
- (b) Silica
- (c) Alumina
- (d) Magnesia
- 54. High MgO in slag
 - (a) increases its viscosity.
 - (b) lowers its fusion temperature.
 - (c) eliminates the formation of dibasic silicates.
 - (d) all (a), (b) & (c).
- 55. The main basic flux is
 - (a) limestone and dolomite.
 - (b) quartz and sand.
 - (c) alumina and gravel.
 - (d) magnesia and silica.
- 56. Neutral fluxes

- (a) do not increase the acidity or basicity of the slag.
- (b) make slag more fluid by forming double and easily fusible salts.
- (c) are exemplified by flourspar (CaF2).
- (d) all (a), (b) & (c).
- 57. Which of the following is an undesirable property of slag?
 - (a) Low fluidity & fusibility
 - (b) Low density
 - (c) Poor heat conductivity
 - (d) High chemical activity and solvent poor for impurities.
- 58. Main flux used in smelting of tin is
 - (a) limestone
 - (b) silica
 - (c) manganese ore
 - (d) flourspar
- 59. Cinder is
 - (a) same as slag.
 - (b) a fused mass formed by the action of flux on the gangue of the ore and fuel.
 - (c) a product resulting from the interaction of acid & basic oxides of high melting points.
 - (d) all (a), (b) & (c).
- 60. Pick out the wrong statement.
 - (a) In pyrometallurgy, all reduced elements join the metal and all oxidised ones go to form slag.
 - (b) The hearth temperature of blast furnace can be regulated by adjusting the slag composition,
 - (c) The slag furnishes a means for sulphur removal in iron blast furnace.
 - (d) none of these.

<i>j</i>		A	nswers		
50. (c)	51. (c)	52. (d)	53. (c)	54. (b)	55. (a)
56. (d)	57. (a)	58. (a)	59. (d)	60. (d)	

- 61. Low specific gravity of slag is desirable mainly due to the fact that, it
 - (a) permits clean and better separation from metal/matte.
 - (b) makes the slag more fluid.
 - (c) protects the metal from overheating due to poor heat conductivity.
 - (d) is more fusible.
- 62. Flux required in Bessemerising of copper mattee is
 - (a) acid flux
 - (b) basic flux
 - (c) neutral flux
 - (d) none, as it is selffluxing
- 63. Slags are used for
 - (a) cement making.
 - (b) fertiliser production.
 - (c) insulation & railroad ballast.
 - (d) all (a), (b) & (c).
- 64. Copper is not
 - (a) ductile.
 - (b) malleable.
 - (c) a very good conductor of heat & electricity.
 - (d) none of these.
- 65. Presence of high quantity of impurities (like arsenic, antimony, oxygen, bismuth etc.) in copper greatly affects its
 - (a) thermal conductivity
 - (b) electrical conductivity
 - (c) tensile strength
 - (d) all (a), (b) & (c)
- 66. Presence of high% of oxygen in copper $(0.05\% \ 0_2)$ is considered desirable increases its

- (a) brittleness
- (b) ductility
- (c) both (a) & (b)
- (d) neither (a) nor (b)
- 67. Presence of arsenic in copper greatly reduces its
 - (a) electrical conductivity.
 - (b) tenacity & hardness.
 - (c) malleability & ductility.
 - (d) none of these.
- 68. Presence of antimony in copper increases its
 - (a) electrical conductivity
 - (b) brittleness
 - (c) both (a) & (b)
 - (d) neither (a) nor (b).
- 69. Presence of bismuth in copper
 - (a) causes brittleness.
 - (b) renders it unsuitable for wire-drawing,
 - (c) both (a) & (b).
 - (d) neither (a) nor (b).
- 70. Copper is used for the
 - (a) manufacture of electric transmission cable.
 - (b) alloy making.
 - (c) sheet, plate, rod & tube making.
 - (d) all (a), (b) & (c).
- 71. Which of the following is an oxide ore of copper?
 - (a) Chalcocite
- (b) Chalcopyrite
- (c) Malachite
- (d) Bornite
- 72. Which of the following is a sulphide ore of copper?
 - (a) Cuprite
- (b) Azurite
- (c) Malachite
- (d) None of these

Answers

- 61. (a) 62. (a)
- 63. (d)
- 64. (d)
- 65. (d)
- 66. (d)

- 67. (a)
- 68. (b)
- 69. (c)
- 70. (d)
- 71. (c)
- 72. (d)

_		pure mineral is nalcopyrite nalachite	atn (b) electors	 (a) facilitate the existence of oxidising atmosphere in the reverberatory furnace (b) eleminate some sulphur (by its oxidation to SO2) from it. (c) produce copper rich (about 75%) matte. 				
(a) Mosab (b) Khetri (c) both (c) (d) neithe	er (a) nor (b)	hand)	(d) all 80. Desira resultii	 (d) all (a), (b) & (c). 80. Desirable percentage of copper in the resulting from smelting of sulphide ore is about (a) 10 (b)40 				
about (a) 1-3 (c) 60-64 76. Copper is	(b) 30 (d) 85 s extracted from method. etallurgical metallurgical		81. Grade furnace (a) cha (b) sme (c) sme (d) nor 82. A low	81. Grade of matte produced in a reverbera furnace can be controlled by adjusting t (a) charge composition (b) smelting time (c) smelting temperature (d) none of these 82. A low grade matte				
(d) neither 77. More wide metallic ce (a) by rede (b) mixing the mi (c) roastin (d) none of	ely used process opper from its ox uction smelting it with sulphide xture in reverberg it in blast furnation these.	n blast furnace, ore and smelting ratory furnace.	 (a) is rich in FeS. (b) is lean in Cu2S. (c) requires large quantity of silica for fluxing. (d) all (a), (b) & (c). 83. In flash smelting process of copper extraction (a) no external fuel is required (preheated air and exothermic reactions serve as source of heat). (b) high grade of matte is produced thereby 					
gical opera from its su (a) Roasti roaste (b) Bessen (c) Refinin (d) None o	ation involved in alphide ores? ng of concentrated d product to matt nerising of the m ng of blister coppe of these. purpose of roast	atte.	has (d) all 84. Fire re produce (a) tou (b) ver (c) ver	 (c) smelting process is easier to contral has greater flexibility. (d) all (a), (b) & (c). 84. Fire refining of blister copper is deproduce copper. (a) tough (b) very high purity (99.99%) (c) very high electrical conductivity (d) electrolytic 				
		Ans	 swers					
73. (a) 79. (b)	74. (c) 80. (b)	75. (a) 81. (a)	76. (c) 82. (d)	77. (b) 83. (d)	78. (d) 84. (a)			

to produce	e copper with hig	ter copper is done gh	91. Of all the commercial metals, which is the most plentiful?					
	(a) purity (99.99%)			pper		minium		
	cal conductivity		(c) Iroi	1	(d) Lead	d		
(c) both (d) neither	(a) & (b) (a) nor (b).		92. Aluminium and its alloys are given excellent protection against corrosion by					
•	copper produced percent. (b) 99 (d) 87		(b) gal- (c) lead	anodising tr vanising. I coating. ne of these.	eatment.			
refining of (a) 1-3 (c) 46 -52	ncentration in elf copper is about (b) 10 (d) 83 metals like gold,	93. Aluminium is produced by (a) smelting its ore in a reverberatory furnace. (b) electrolysis of a solution of alumina in fused cryolite (Na ₃ AlF ₆).						
	ered in electrolyt	ic refining of cop-	` ,	rmal decomp ne of these.	position of	f bauxite.		
cell. (b) spent e	(a) mud at the bottom of the electrolytic			na percentag	ge in bauxi (b) 25 (d) 90	te is about		
(c) both (a) (d) neither	(a) & (b). (a) nor (b).		95. Bauxite requirement to produce one ton of aluminium is abouttons.					
traction	_	od of copper ex-	(a) 1.5 (c) 15.5		(b) 5.5 (d) 25.5			
(b) is the c (c) involve precip	ied to very poor cheapest of all me es crushing, wash itation of ore. (b) & (c).	96. Melting point of pure alumina is						
90. Which is a leaching comethod of a (a) Sulphu (b) Nitric	the cheapest and hemical used in copper extraction to tric acid	alumin (a) che sup (b) ava (c) ava	tium plant is ap & abund oply. The control of the	s the ant electric high purity nigh purity	cal power bauxite.			
			wers				T	
85. (c)	86. (b)	87. (b)	88. (a)	89. (d)		90. (a)		
91. (b)	92. (a)	93. (b)	94. (c)	95. (b))	96. (c)		
97. (a)								

Ansv	wers				
105. Electric current used for conversion of calcined alumina to aluminium by electrolysis	(a) strength(b) hardness(c) both (a) & (b)(d) neither (a) nor (b).				
(a) very high (b) < 0.5 (c) < 3 (d) > 5	110. Ageing of aluminium alloys causes increase in its				
104. Bayer's process is suitable and economical, only when silica percentage of bauxite is	(c) machinability without tearing.(d) ability for cold working.				
103. Al(OH) is converted to alumina (in Bayer's process) by (a) electrolysis (b) calcination (c) smelting (d) none of these	109. The most significant property of aluminium alloy is its(a) corrosion resistance.(b) high strength to weight ratio.				
102. Complete precipitation of Al(OH\ from sodium aluminate in settling tank (in Bayer's process) takes abouthours. (a) 2 (b) 25 (c) 60 (d) 72	 (a) increases its load carrying capacity. (b) does not affect its electrical conductivity. (c) facilitates its use for manufacture of cable and bus bar for transmission of electric power. (d) all (a), (b) & (c). 				
101. Lime added to bauxite during its digestion in Bayer's process (a) prevents the dissolution of silica. (b) causes the formation of insoluble calcium silicate. (c) prevents the loss of alumina. (d) all (a), (b) & (c).	reduction cell are made respectively of (a) carbon and iron bar. (b) iron bar and carbon. (c) aluminium and carbon. (d) carbon and aluminium. 108. Reinforcement of annealed aluminium by steel core				
(d) FeO, CaO & MgO. 100. In Bayer's process, powdered bauxite is digested (in a steam jacketted autoclave at 150°C for 2-4 hours) in (a) NaOH (b) NHCI (c) HSO (d) HCI	aluminium by electrolysis is done in a (a) carbon lined furnace. (b) concrete chamber. (c) wooden chamber. (d) stainless steel chamber. 107. Anode and cathode in the aluminium				
98. Bayer's process is used for purifying (a) bauxite (b) alumina (c) aluminium (d) none of these 99. Main impurities in bauxite are (a) Fe0 Si0 & TiO (b) CaSiO MgSiO & Si0 (c) CaO, MaO & Si0	 (a) keeps the electrolyte liquid by generation of heat. (b) causes electrolytic dissociation of alumina. (c) both (a) & (b). (d) neither (a) nor (b). 106. Conversion of calcined alumina to 				

98. (a) 99. (a) 100. (a) 101. (d) 102. (c) 103. (b) 104. (c) 105. (c) 106. (a) 107. (a) 108. (d) 109. (b) 110. (c)

necessity	e severely cold wo		(c) electrometallurgical (d) both (b) & (c)			
(b) high d	nalleability. uctility. crystallisation tem nachinability.	perature.		tes to extract tin	g of black tin con- is) flourspar or lime) sand	
112. Tin exists (a) 2 (c)4 113. Tin coatin (a) hot-dip (b) electro (c) sprayin (d) all (a), 114. Tin is used (a) corrosi copper (b) making (c) alloy n loys, w metals (d) all (a), 118. The most i (a) chalco (c) cassiter 116. Tin percer (a) 26.4 (c) 78.6 117. Tin percer (a) 2 (c) 78 118. Tin is re	in	ing of steel & azes, fusible al- als, pewter type sin is aurspar lamine iterite is about .6 .2 ore is about	120. The te tin oxi during about (a) 300 (c) 100 121. Melting (a) ll6 (c) 696 122. Tin sm (a) sha (b) reve (c) both (d) nei 123. Use of shaft for tree (b) retroop tree (c) proceedings of the control of the con	emperature required by carbon and smelting of black and the furnace, which en the smelting contacts is intermitted (a), (b) and (c). The contact is the sign of time with the smelting contact in the smelting contact is intermitted (a), (b) and (c). The contact is intermitted (b) and (c) are the smelting contact in the smelting contact is intermitted (a), (b) and (c). The contact is intermitted (b) and (c) are the smelting contact in the slang of time and the smelting contact in the slang of time and the slang of time and the slang of time and the smelting contact in the slang of time and	red for reduction of and carbon monoxide ck tin concentrate is 5 500 1600. n is	
			swers			
111. (c)	112. (a)	113. (d)	114. (d)	11S. (c)	116. (c)	
117. (a) 123. (d)	118. (a) 124. (c)	119. (b)	120. (c)	121. (b)	122. (c)	

125. Tin is pre	sent in the slag mo	=	(c) add	litions of Cu, I	Ni & Te.			
(a) silicat	e (b) chl	oride	(d) noi	ne of these.				
(c) oxide	<i>(d)</i> sul	phide	132. Lead n	nattresses are ı	ised			
tin from in (a) silica (c) bauxit	(<i>b</i>) lin e (<i>d</i>) tin	nestone oxide	dat sky (<i>b</i>) as	 (a) as shock absorbers between the foundations and steel framework of skyscrappers. (b) as pigments. (c) for electrical cable sheathing. 				
(a) electro	-		(d) noi	ne of these.	-			
 (b) in a reverberatory furnace. (c) at a temperature just above the melting point of tin (i.e. 232°C). (d) both (b) & (c). 			(a) Gai	russite	oflead ? (b) Anglesite (d) Azurite orm contains maximum			
128. Lead (a) can't	pe work hardened.	on temperature.		tage oflead? lena	(a) Anglesite (d) Cassiterite			
(d) all (a)	(c) can be made into rod/pipe by extrusion. (d) all (a), (b) & (c). 129. Measure of purity oflead is the			135. Lead percentage in pure 'Galena' is about (a) 8.6 (b) 35.8 (c) 61.4 (d) 86.6				
(a) produ struck (b) darkn	ction of a very dul with a hammer. ess of its streak on (a) & (b).	l sound when	136. Lead p (a) 4.2 (c) 68.3	percentage in p	ure Anglesite is about (b) .6.8 (d) 89.3 ure cerussite is about			
	er (a) nor (b) .	ant property of	(a) 6.5 (c) 44.5		(b) 18.5 (d) 77.5			
lead is its	130. Most significant & important property of lead is its (a) low melting point. (b) shock absorbing capacity.			138. Lead percentage in a typical lead ore may be about				
(d) high 1	esistance to corros recrystaiiisation te	mperature.	(c) 64	1. 2.				
131. Corrosion resistance oflead can be increased by(a) work hardening.(b) annealing.			(<i>b</i>) lini (<i>c</i>) bea	rage batteries ing of chemica ring material in nt manufactur	l equipment. manufacture.			
			swers					
125. (a) 131. (c) 137. (d)	126. (b) 132. (a) 138. (b)	127. (d) 133. (d) 139. (a)	128. (d) 134. (a)	129. (c) 135. (d)	130. (c) 136. (c)			

 140. Most of the lead is produce (a) reverberatory furnace (b) blast furnace (c) rotary kiln (d) none of these 141. Extraction oflead from lead by 	sulphide is done	147. Coke consumption in lead blast furnace is about percent of the charge. (a) 2-4 (b) 12-15 (c) 48-50 (d)80-85 148. Temperature in the tuyere level in the lead blast furnace is about				
 (a) direct reduction with ca (b) direct reduction by CO. (c) first converting it into one ing) before smelting. (d) All (a), (b) & (c). 	(c) 1800 (d) 2200 149. Pattinson's process and Parke's process is used for the (a) removal of impurities like S, Cu & As from lead.					
142. The most common ore of le (a) galena (b) an (c) cerussite (d) ch		(c) dros	lverisation of l sing. e of these.	ead.		
143. Cross-section of the blast smelting oflead ores is (a) circular (b) rec (c) same as that used in case (d) both (b) & (c).	150. Litharge is chemically (a) PbS (b) PbO (c) Pb-Ag alloy (d) Pb-Ag-Au alloy 151. Cupellation is carried out for the (a) purification of gold, (b) purification of copper.					
144. Roasting of lead ore is done(a) Dwight-Lloyd Sintering(b) blast furnace.(c) reverberatory furnace.(d) none of these.	 (c) extraction of copper. (c) extraction of silver & gold from lead. (d) none of these. 152. Zinc is not (a) resistant to atmospheric corrosion. 					
in the blast furnace (i. e. n (a) prevent their loss by vol (b) facilitate its complete m (c) achieve its better desulph (d) increase the yield oflead	 (b) very malleable or ductile at ordinary temperature. (c) rollable into thin sheets under any circumstances. (d) able to be drawn into wire in any case. 153. Bulk of the zinc is used mainly for the 					
ofof iron & calc (a) oxides (b) silt (c) sulphates (d) ch	(a) prot (b) prod (c) mar	tection of steel	by galvanising. based die casting. gments.			
	Ans	wers	<u> </u>			
140. (b) 141. (c) 146. (b) 147. (b) 152. (b) 153. (a)	142. (a) 148. (b)	143. (d) 149. (b)	144. (a) 150. (b)	145. (a) 151. (c)		

in the making of (a) brasses (c) brazing solder	(b) bearing metal (d) die-casting alloy		(a) ZnO + C = (b) 2 ZnO+C= (c) ZnO +CO= (d) none of the	$=2Zn+CO_2$ $=Zn+CO_2$				
155. Which is an ore of (a) Galena (c) Calamine 156. Zn percentage in about (a) 16 (c) 52 157. Sphalerite (an ore of	zinc? (b) Azurite (d) Cerussite pure mineral calamine (b) 28 (d)82	163. e is 164.	163. Recovery of zinc from its ore is about the same state of the					
(a) oxide (c) carbonate	(b) sulphide (d) nitride		(c) Zinc vapou retorts.(d) Failure of z	•				
158. The main deposit of (a) Jharkhand (c) Orissa	(b) Bengal (d) Rajasthan	100	(a) Failure of Z . 'Hard zinc' is (a) Zn-Fe alloy (b) redistilled t (c) used in the	o produce pui	re zinc.			
159. Zinc is extracted from its ore by the			(Cu = 60%, Zn = 38%, Fe = 2%. (d) all (a), (b) & (c). 166. Spelter is aconcentrate. (a) Zinc (b) lead (c) Tin (d) Copper					
	n roasting zinc ore is (b) ZnO to ZnS (d) ZnSO ₄ to ZnO	to 167.	Purity of zinc spelter can be a (a) 29.9 (c) 89.9	obtained by	redistillation of percent.			
roasting of(a) lead	161. Dwight-Lloyd machine is used for the roasting ofore.			168. The formation of undesirable zinc ferri (which is insoluble in warm dilute H ₂ SC during roasting of zinc ore depends upon th (a) temperature & duration of roasting.				
162. Which of the foll in the reduction of exothermic?	owing reactions invol of zinc from its oxide	I .	(b) iron content of the ore. (c) association of iron & zinc. (d) all (a), (b) & (c).					
		Answers			ı			
154. (a) 155. 160. (a) 161. 166. (a) 167.	(c) 162. (d)			8. (d) 4. (a)	159. (c) 165. (d)			

169.		roasts at a	temperature of	, ,) lead		(b) tin	
	oc.	(1)	500	(c) copper		(d) aluminium	
	(a) <600	(b) > 6		177. W	hich of fo	llowing	metals occurs mostly is	n
	(c) 350	(d) 13		th	e form of	sulphide	s ?	
170.	Leaching of roas		e is done with	(a)	Tin		(b) Aluminium	
	(a) dilute H2SO4		~ ~ .	(c) Silver		(d) Iron	
	(b) concentrated(c) dilute HCl(d) dilute HNO3		SO4		the form		ng metals occurs mostl s?	y
	,			(a) Lead		(b) Zinc	
171.		g blast furr	nace,of	(c) Tin		(d) Copper	
	the furnace. (a) preheated air top ⊥		ced both at the		mineral is etal	called th	ne ore of the metal, if th	e
	-		es are withdrawn	(a) percenta	ge in the	ore is above 25'%.	
	from the cen			(b) can be ed	conomic	ally extracted from it.	
	(c) both (a) & (b)).		(c) has a mo	derately	low melting point.	
	(d) neither (a) ne	or (b).		(d) is not bri	ttle.		
	72. Which of the following materials requires maximum electrical power (kWh/ton of product), when produced by either electrolysis or in electric furnace? (a) Copper (b) Aluminium (c) Pig iron (d) Zinc 73. Charge for the zinc smelting blast furnace is				180. Which of the following is not a mineral dressing operation? (a) Roasting (b) Comminution (c) Concentration (d) Screening & classification 181. Which of the following ore concentration			
	preheated to (<i>a</i>) 150	(b) 30				oes not	utilise the differences	in
	(c) 800	(d) 11			ensities?		(I) I' .	
174	* *	, ,	n the gas coming) Spiralling	_	(b) Jigging	
1/4.	out of zinc smelt			(c) Tabling		(d) Froth floatation.	
	(a) 1	(b) 5	arrace is acout		-		is aprocess.	
	(c) 25	(d) 45) smelting		(b) roasting	
175	Residual zinc p	` ′		(c) calcining		(d) distillation	
175.	zinc smelting bla			183. H	eterogeneo	ous mixt	ture of arsenides of tw	/O
	(a) 1-5	(b) 20					ulting from smelting	эf
	(c) 40-45	(d) 60)-65		senical ore	es) is cal		
176.	Oxides of	is not re	ducible bycarbon) matte	_	(b) speiss	
	in fuel fired furna		,	(c) bimetal s	lag	(d) none of these	
r			Ans	wers				11
1	169. (b) 1'	70. (a)	171. (c)	172. (b))	173. (c)	174. (b)	
1	175. (a) 1'	76. (d)	177. (c)	178. (c	·)	179. (b)	180. (a)	
	181. (d)	82. (c)	183. (b)					

182. (c)

183. (b)

184. Which of the following is an acid flux? (a) MnO (b) SiO ₂ (c) CaO (d) CaF ₂	(a) 2 (b)4 (c) 6 (d) 8. 192. Purity of electrical grade aluminium should
185. Neutral fluxes like fluorite increase the of the slag. (a) basicity (b) acidity (c) fluidity (d) none of these	be >percent. (a) 80 (b) 85 (c) 95 (d)99 193. Voltage employed in the aluminium
186. Slag is not used for making (a) cement (b) fertiliser (c) road (d) buildings 187tons of bauxite is required to produce one ton of aluminium. (a) 1.5 (b) 3.5	reduction cell is aboutvolts. (a) 5-7 (b) 220-240 (c) 4000 - 5000 (d) 11000 194. Which of the following pure minerals of copper contains least % of copper? (a) Chalcopyrite (b) Chalcocite
(c) 5.5 (d) 8.5 188. Aluminium industry is a highly electrical	(c) Cuprite (d) Malachite 195. The copper content in the Indian copper ores
energy intensive industry. Specific electrical energy consumption in aluminium making is aboutkWh/ton of aluminium. (a) 7000 (b) 14000 (c) 21000 (d) 28000	varies frompercent. (a) lto3 (b)7tol0 (c) 10 to 15 (d) 15 to 20 196. Coke consumption in the blast furnace for the smelting of copper mattee is about
189. Aluminium is produced by the electrolysis of a solution of alumina in fused cryolite (m.p 1000°C). The chemical formula of cryolite is (a) Na ₃ AlF ₆ (b) A1p ₃ · 2Hp (c) All6 (d) NaAlO ₂	ior the smelting of copper mattee is aboutpercent of the charge. (a) 5 (b) 15 (c) 30 (d) 50 197. Pick out the wrong statement. (a) In pyrometallurgy, all reduced elements join the metal and all oxidised ones go to form a slag.
190. Bayer's process is meant for the (a) reduction of Al ₂ 0 ₃ to AL (b) purification of bauxite. (c) refining of aluminium. (d) none of these.	(b) The fused mass formed by the action of the flux on the gangue of the ore & the fuel is called 'cinder'.(c) The alkali & alkaline earth metal are usually obtained by hydro-metallurgi-
191. During refining of aluminium in Hoope's cell, one ton of aluminium is produced from abouttons of alumina.	cal method.(d) Froth floatation is used mainly for concentrating sulphide minerals.
Answ 184. (b) 185. (c) 186. (d) 190. (b) 191. (a) 192. (d) 196. (b) 197. (c)	Vers 187. (c) 188. (c) 189. (a) 193. (a) 194. (a) 195. (a)

198.	The most extensive	and major use of c	copper			with SiO ₂ forming		
	is in(a) electrical industry(b) making brasses	y			stag. & other sulphand they form			
100	(c) making bronzes(d) none of these				_	metals is not ex- cical method from		
199.	Purity of copper prefining of blister copy (a) 90	·	- I	(a) Tin (c) Copper	(b) Z (d) N	one of these		
200.	(c) 98 Leaching operationmethod of	(d) 99.99 is carried out			_	metals is not ex- ical method from		
	(a) hydrometallurgic (b) pyrometallurgica	cal		(a) Lead (c) Tin		opper luminium		
-0.4	(c) electro-metallurg (d) all (a), (b) & (c)		207.	Which of the (a) Galena (c) Cerussite	(b) A	not an ore oflead? ngelsite zurite		
201.	Sphalerite is the ma (a) cadmium (c) lead	(b) zinc (d) tin	208.	Pick out the	wrong statem	ent pertaining to arke's process.		
202.	Calamine is a zinc calamine is about	ore. Zinc percenta	age in		greater capaci	ty for dissolving		
	(a) 38 (c) 67	(b) 52 (d) 87		the liquid		ally miscible in nan zinc.		
203. Extraction of tin from the black tin concentrate (called black tin) is done by smelting in a			I	(d) Lead has a lower freezing point than zinc.				
	(a) blast furnace(b) shaft furnace(c) reverberatory fur(d) both (b) & (c)	тасе	209.	Litharge is cl (a) PbO (c) PbSO ₄	hemically repr (b) P (d) P			
204.	Pick out the wrong sextraction of copper (a) Sulphur has greated for copper. (b) Oxygen has greated for copper.	from sulphide ore ster affinity for iro	es. n than		the Illurgical etallurgical allurgical	netals are usually methods.		
/ 			Answers			"		
2	198. (a) 199. (204. (a) 205. (210. (b)				202. (b) 208. (b)	203. (d) 209. (a)		

-	is the main source	_	218.				um is done by
	percent zinc in	It.			process		nd Hamault
(a) 47 (c) 67	(b) 52 (d) 87			(a) Hoope (c) Harris		(<i>b</i>) Hall at (<i>d</i>) Bayer	nd Heroult 's
212. Pick out the (a) B same. (b) Bauxit (c) Aluminsulate conductions	he wrong statements auxite and aluminate is the main ore continued in the continuents.	of aluminium. sed for thermal s high thermal		Which of the electro (a) Hoope (b) Hall a (c) Harris (d) none of Which of	the follow olytic reduces by process and Heroult process of these	ing process ction of alu process	ses is used for
as a re 213. The pyro	educing agent. ometallurgical proction of magnesic	ocess used for		zinc? (a) Zincite (c) Zinc b		(b) Calam (d) None	
-	b's (b) Pic s (d) Mo	_	221.				g of nickel ore nd
the extrac	the following protion of nickel?			(a) iron (c) cadmiu	ım	(b) copper (d) calcium	
. ,	e's process (b) Has process (d) Pa	•	222.			urnace is e in ore at 12	employed for 200°C.
sulphide a		-		(a) rotary		(b) blast	c resistance
(<i>a</i>) iron or (<i>c</i>) iron su	, ,	n sulphide pper oxide	223.	Which of (a) Wolfra		ing is an or (b) Wulfe	e of tungsten?
	res are concentrate	ed using		(c) Carnel	lite	(d) Pitchb	lende
(c) floatati	etic separator ion cell		224.	Carnellite (a) tungste (c) magne	en	of (b) nickel (d) berylli	
,	ication equipment furnace is used		225.	What is th	e percenta	ge of coppe	er in the matte extraction of
(a) rotary (c) reverbe	(b) bla eratory (d) cru			(a) 25 (c) 75		(b) 50 (d) 95	
		An	swers				
211. (c)	212. (a)	213. (b)	214.	(c)	215. (b)	2	216. (c)
217. (b)	218. (a)	219. (b)	220.	. (c)	221. (a)	2	222. (c)

225. (b)

223. (a)

224. (c)

226. Aluminium can not be pr	oduced by reduc-	(c) Col	ke	
tion of alumina by carbon	=	1 ' '	lomite.	
 (a) aluminium has a ver oxygen upto 2000°C. (b) alumina has a very hig (c) suitable furnace for available. (d) none of these. 	th melting point.	233. When pressu (a) ore (b) ore	sulphide ores re leaching, the is roasted. does not need oper produced	
227. Pick out the wrong statem	ent.	1	ne of these	
 (a) The largest source of water. (b) Cerium is not a rare e. (c) Presence of impurities its electrical conductive. (d) Poling is the process for copper. 	arth metal. in copper reduces	234. Which stituen pyrom copper (a) Iro	of the follo ts of the etallurgical n from its sulp n oxide n sulphide	(b) Iron silicate(d) Iron sulphate
228. Zinc refining is done by		of cop		ving is the carbonate or
(a) liquation (b) (c) electrolysis (d) l		(a) Cu	_	(b) Chalcocite(d) Chalcopyrite
229. Which of the following is denum?	an ore of molyb-	236. Percen	tage of copper	r in chalcopyrite is about (b) 35
(a) Sheelite (b) I (c) Wulfenite (d) ((c) 55		(d) 70
230. Concentrated sulphide n jected to pressu		matte	may be about	er in high grade copper
extraction of nickel.		(a) 20		(b) 40
(a) CO2 (b) S	-	(c) 60		(d)80
(c) NH ₃ (d) 1 231. In Mond's process, nickel form of	H ₂ SO ₄ is obtained in the	tractio	n is suitable f	process of copper exor itsore. (b) oxide
(a) liquid (b) v	apour	(c) sulp	phide	(d) none of these
-	none of these	239. Which	of the follow	wing is a silicate ore of
232. Which of the following		alumir		
smelting of roasted tin or	e ?	(a) Alu		(b) Kaolin
(a) Lime & coal powder(b) Limestone		(c) Cry	ronte	(d) Bauxite
	Ans	 		
226. (a) 227. (b)	228. (d)	229. (c)	230. (c)	231. (c)
232. (a) 233. (b)	234. (b)	235.(c)	236. (b)	237. (b)
238. (b) 239. (b)				

240. Aluminium is not extracted from its oxide ore by pyrometallurgical process as in the case of iron ores, mainly because the (a) melting point of aluminium is very high (2000°C). (b) reduction of aluminium oxide to aluminium with carbon requires a temperature of 2500 °C while aluminium vaporises at 2000°c. (c) aluminium becomes brittle at very high temperature. (d) none of these. 241. Hoope's process in aluminium extraction				245. Percentage of copper in is abo 97.5. (a) high grade copper matte (b) blister copper (c) electrolytically refined copper (d) none of these 246. 'Cryolite' used during the extraction aluminium (Bayer's process) contains mixture of flourides of calcium, sodiu & aluminium. Percentage of aluminium flouride in cryolite is about (a) 20 (b) 40 (c) 60 (d) 80				
(a) conver (b) reducti alumin (c) electro	nium. lytic refining of	e to alumina. ninium oxide to		. Which is the (a) Galena (c) Cassiter	rite the main	mportant ore of (b) Cinnaba (d) Argentitore of silver. (b) Sylvanitore	r e	
242. Which of the following is the carbonate ore of zinc? (a) Troosite (b) Calamine (c) Zinc blende (d) Franklinite				 (c) Azurite (d) Cryolite 249. Pick out the wrong statement. (a) Rolled gold is not an alloy of gold. (b) Sulphur does not occur in free state in 				
extracted lurgical as ?	from its ore to well as hydrom	metals can not be by both pyrometal- netallurgical process		(d) Copper Noamu	ore reser andi (Jhar		l mainly in	
(a) Alumi (b) Zinc (c) Copper (d) None (r of these	16 4	250.		h alkali so	nined during to olution in Bay °C. (b) 100 (d) 500		
 244. Dwight Lloyd machine is used for the (a) roasting of zinc sulphide ore. (b) electrolytic reduction of alumina. (c) distillation of zinc oxide. (d) electrolytic refinning of copper. 				. Zinc oxide	rocess of	ed to zinc using zinc extraction (b) hydrogen (d) steam	on.	
240. (b)	241. (c)		swers	(a)	244 (a)	245	5. (b)	
240. (b) 246. (c)	241. (c) 247. (b)	242. (b) 248. (a)	243 249	. (a) . (d)	244. (a) 250. (b)		1. (a)	

252	2. Purity of aluminium	m achieved	l in Hoope's	259.	Parke's proc	cess is us	ed in the e	extraction	of	
	refinning process is	about	percent.		(a) alumini	um	(b) zinc			
	(a) 95	(b) 96.5	ļ		(c) silver		(d) copp	er		
	(c) 98	(d) 99.9		260	. The cyanide j	process is			n of	
253	3 is the ma	ain ore of σ	old	200.	(a) alumini		(b) gold		1 01	
233	(a) Calaverite	(b) Argen			(c) copper	um	(d) merc			
	(c) Willemite	(d) none (261		مطامسا عدا		_	:-	
		. ,	of these.	261. The electrolyte in the extraction of alumina is						
254	4. Pick out the correct			(a) fused cryolite with flourspar.(b) fused cryolite with felspar.						
	(a) Vertical retort pr		•		-	-	-			
	used process for				(c) pure alu		h bauxite	and motte	en	
	oxide during the				cryolite.		•	••		
	(b) Lead is such a so		at it can be		(d) pure alu	imina in i	molten cr	yolite.		
	scratched by fin		!	262.	Thermite (a	a mixture	e of one j	part alumi	nium	
	(c) Copper ore is sin		rever-		powder and	-		-	ess is	
	beratory furnace		11 '		used to extr	ract meta	ls, when t	their		
	(d) During roasting		ierally in-		(a) sulphide			converted	into	
	cipient fusion ta	ikes place.	!			y roastin	-			
255	5. Copper matte is p	-	•		(b) oxides c			-		
	operation in course	of extract	ion of copper		(c) carbonat		t yield ox	ides by the	ermal	
	from its ore.		!		decomp					
	(a) smelting	(b) roastir	ıg		(d) melting	points ar	e very hig	gh.		
	(c) bessemerisation	(d) none of	of these	263.	Copper is e	extracted	from lov	w grade or	re by	
256	5. Iron is	the most	predominant		(a) electrom	netallurgy	7	-	-	
	constituent of the		•		(b) hydrome	etallurgy				
	pyrometallurgical p	~ .			(c) pyrometa	allurgy				
	copper from its sulp	•	!		(d) all 'a', b'	' & 'c'				
	(a) silicate	(b) phospl	hate	264.	High purity	v coppei	r metal i	is obtaine	d by	
	(c) aluminate	(d) silicide	e		electrolytic				•	
257	7. Roasting results in				ing properti					
<i>23</i> ,	in case of	the product	non or means		(a) Low elec					
	(a) iron pyrites	(b) galena	9		(b) Malleabi		-			
	(c) bauxite	(d) cinnal			(c) High the	•	nductivity			
	,	()			(d) Ductility					
258	3. Roasting of zinc ble		ts it into	265	'C'aharli	:	:-+a+ o	- C		
	(a) ZnO	(b) Zn	!	205.	. 'Cinnabar' i	is an imp				
	(c) ZnS	(d) ZnSO	4		(a) zinc		(b) merc			
			ļ		(c) lead		(d) copp	er		
r			Ans	wers						
	252. (d) 253.	(a)	254. (b)	255.	. (a)	256. (a)		257. (b)		
	258. (a) 259.	(b)	260. (b)		. (d)	262. (b)		263. (b)		
,	264. (a) 265.	(b)								

269 can be extracted from its ore by employing both hydrometallurgy as well as pyrometallurgy. (a) Copper (b) Aluminium (c) Iron (d) none of these 270. Pick out the correct statement.	 (a) Metal whose extraction is the most expensive. (b) Metal standing higher in electrochemical series. (c) Metal whose oxide is not reducible by carbon in a fuel fired furnace. (d) Metal whose oxide decomposes by heat alone. List II I. Aluminium II. Gold III. Silver IV. Alkali & alkaline earth metals. 273. Match the name of ores of various non-ferrous metals. List I (a) Molybdenum I. Anglesite (b) Tungsten II. Carnellite (c) Magnesium III. Wolframite (d) Lead IV. Wulfenite 274. Match the types of ores of various non-ferrous metals. List I (a) Carbonate ore oflead. (b) Oxide ore of tin. (c) Sulphide ore of copper. (d) Carbornate ore of zinc. List II I. Calamine II. Cerussite III. Cassiterite IV. Chalcocite
--	---

Answers

266. (c) 267. (c) 268. (d) 269. (a) 270. (a) 271. (b)

272. (ii) (iv) (i) (iii) 273. (iv) (iii) (ii) (i) 274. (ii) (iii) (iv) (i)